ADVANCED ANALYTIC METHODS
IN APPLIED MATHEMATICS, SCIENCE,
AND ENGINEERING

By Hung Cheng

LuBan Press, 2007
6.125 x 9.25, 504 pp.
Hardcover

ISBN: 0975862510
$69.95

THIS IS A SAMPLE COPY, NOT

TO BE REPRODUCED OR SOLD

This sample includes: Table of Contents; Preface; Chapters 2 and 7; and Index
Please see Table of Contents for a listing of this book’s complete content.

PUBLICATION DATE: August 2006

To purchase a copy of this book, please visit www.lubanpress.com.

To request an exam copy of this book, please write marketing@lubanpress.com.

LuBan Press ~ www.lubanpress.com Tel: 617-988-2407  Fax: 617-426-3669



http://www.lubanpress.com/
mailto:marketing@lubanpress.com

SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

Advanced Analytic Methods
in Applied Mathematics, Science, and Engineering




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

by Hung Cheng ISBN: 0975862510
Contents
1 The Algebra of Operators 1
A. Calculus . . ... .
B. Ordinary Differential Equations . . . . . ... ... ....... 7
2 Complex Analysis 35
A.  Complex Numbers and Complex Variables . . . . ... ... .. 35
B. AnalyticFunctions . . . . . ... ... ... ... . 41
C. The Cauchy Integral Theorem . . . . .. ... ... ... .... 47
D. Evaluationof Real Integrals . . . . . ... ... .. ....... 59
E.  Branch Points and BranchCuts . . . . . .. ... ... ... .. 70
F. Fourier Integrals and Fourier Series . . . . . .. ... ... ... 87
G. The Laplace Transform . . . . . . .. ... .. ... ... .... 105
3 First-Order Partial Differential Equations 117
A. TrivialExample . ... ... ... ... ... ... .. 118
B. Linear Homogeneous PDEs . . . . ... ... .......... 119
C. Quasi-LinearPDEs . . . . . .. ... ... ... ......... 127
D. GeneralCase . . ... .. ... ... .. .. 134

4 Second-Order Partial Differential Equations 145

A. The Laplace Equation . . ... .. ... ............. 145
B. TheWaveEquation. . . ... ... ... ............. 158
C. TheHeatEquation . .. ... ................... 161
5 Separation of Variables 175
A. The Laplace Equation . .. ... . ... ............. 176
B. The Wave Equation with Two Spatial Variables . . . . . ... .. 186
C. The Schrodinger Equation . . . . . ... ... ... ... .... 192

vii




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

by Hung Cheng ISBN: 0975862510

viii

Contents

Singular Points of Ordinary Differential Equations201

A.
B.
C.

Taylor Series Solutions . . . . . . . ... ... ... ... ...,
Frobenius method . . .. ... ... ... ... .. ... ....
Solutions Near an Irregular Singular Point . . . . . . .. ... ..

Appendix: The Gamma Function . . . . . ... ... .........

The WKDB Approximation

B.
C.
D.

WKB in the Zeroth and the FirstOrder . . . . . . ... ... ..
Solutions Near an Irregular Singular Point . . . . . . ... .. ..
Higher-Order WKB Approximation . . . . ... .. ... ....
Turning Points . . . . . . . .. ... ... ...

Asymptotic Expansions of Integrals

A.
B.
C.
D.

Integral Representation . . . . . . ... ... ...........
The Laplace Method . . . . . .. ... ... ... .. ......
Method of Stationary Phase . . . . ... ... ... .......
The Saddle Point Method . . . . . .. ... ... .. ......

Appendix A: Gaussian Integrals . . . . .. ... ... ... ......
Appendix B: Infinite Contours . . . . . . . .. ... ... ... ...,

Boundary Layers and Singular Perturbation

mcow»m mTmoONw >

Regular Perturbation . . . . . ... ... ... ..........
Boundary Layer Theory . . . . ... ... ... ... ......
Turning Points . . . . . . . . ... ...
Turning Point at an Endpoint . . . . . . ... ... ... .....
Interior Turning Points . . . . . . ... ... ... .. ......
Other Problems . . . . . . ... .. ... ... .........

mall Nonlinear Oscillations

Summing Leading Terms . . . . . . ... .. ... ... .....
Renormalized Perturbation—The Improved Poincare Method

The Two-Scale Method . . . . . . ... ... ... ... .....
The Renormalized Two-Scale Method . . . . . . ... ... ...
The Renormalization Group . . . . . . ... .. ... ......

Appendix of Useful Formulae

Bibliography

Index

201

269
273
293
309
337
337

347
347

349
364
373
380
384

405
405
414
430
443
453

461
471




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

Preface

For almost four decades, the Department of Mathematics at MIT has offered a
course called “Advanced Analytic Methods in Science and Engineetiriptie
purpose of this course is to strengthen the mathematical background of all entering
graduate students, so they may be better prepared for their respective coursework
and specialties.

During the past ten years I've been teaching this course | occasionally wrote
notes for the students in my class, intended only to supplement the course’s text-
books. However, at the end one recent semester s¥al studerd suggested |
make my materials, which were by that time more than simply “notes,” accessible
to students beyond MIT. This textbook is the result of expansion of and revisions
to that material.

The background of students taking the course is usually fairly diverse. Many of
them lack some of the fundamentals that would prepare them for a graduate math
course. Thefirst five chapters owe their origin to the need for helping such students,
bringing them up to speed. The last five chapters contain more advanced materials.

Teachers and stlents will thus find that thibook’s content is flexible enough
to meet the needs of a variety of course structures. For a one-semester course with
emphasis on approximate rhetls, a teacher mayi$t skim over the first five chap-
ters, leaving the students to read in more detail the parts they need most. Such
a plan would be especially useful for graduate students entering a Ph.D. program
in engineering, science, or applied mathematics. But if this book is adopted for
a course in advanced calculus for undergraduate engineering, science, or applied
mathematics students, then Chapters 1-6 should be emphasized. Chapters 1-5,
plus a few selected later chapters, would be suitable for a graduate course for Mas-
ter's degree students. In addition, Chapters 3, 4, and 5 may be used as part of the
materials for a course on partial differential equations.

The course was created by Professor Harvey Greenspan. In 1978 Carl M. Bender and Steven
A. Orszag, two lecturers of this course, authored a textbAdkanced Mathematical Methods for
Scientists and Engineers (New York, McGraw-Hill, Inc.; reprinted by Springer-Verlag New York,
Inc., 1998).
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X Preface

While most graduate students and upper-class undergraduate students have al-
ready had a full semester of ordinary differential equations, some of them may
need a refresher. Therefore, Chapter 1 includes a very brief summary of ordinary
differential equations. This first chapter is also a convenient place to reintroduce
the elementary but powerful operator method to students. The operator method en-
ables one to more quickly produce the particular solutions of certain linear ordinary
differential equations as well as partial differential equations, and it also facilitates
many other calculations.

Chapter 2 is for students who need a quick summary of some of the rele-
vant materials in complex analysis. The important but often neglected subjects
of branch points and branch cuts are included, as well as a short discussion of the
Fourier integral, the Fourier series, and the Laplace transform.

Many of the analytic methods discussed in this book arose from the need to
solve partial differential equations. To help the reader see that connection, Chap-
ters 3, 4, and 5 address partial differential equations.

Because many problesrencountered imeal life are often not solvable in a
closed form, it will benefit a student to learn how to do approximations. Chap-
ter 6 presents the methods of series solutions. A few well-known special functions
are used as examples in order to help students gain some familiarity with these
functions while learning the methods of series solutions. | will address the topic
of irregular singular points of an ordinary differential equation, which is not usu-
ally covered in standard textbooks on advanced calculus, such as F. B. Hildebrand,
Advanced Calculus for Applications, Prentice Hall, 1976. The series solution ex-
panded around an irregular singular point of an integral rank is generally divergent
and leads naturally to the concept of asymptotic series, which we’ll cover in sub-
sequent chapters.

Chapter 7 discusses the WKB method. This method gives good approximate
solutions to many linear ordinary differential equations with a large parameter or
those with coefficients that are slowly varying. It is also helpful for yielding so-
lutions near an irregular singular point of a linear differential equation. While the
lowest-order WKB solutions are obtained by solving nonlinear differential equa-
tions, the higher-order WKB approximations are obtained by iterating linear dif-
ferential equations. The last section of this chapter discusses the solutions near a
turning point.

Chapter 8 addresses the Laplace method, the method of stationary phase, and
the saddle point method, which are useful for finding the asymptotic series of

2While this method has been routinely used in field theories, particularly with the derivation of
various Green functions, it has not been adequately covered in most undergraduate textbooks, with
the notable exception @ifferential Equationsby H. T. H. Piaggio, G. Bell and Sons, Ltd., London,
1946 (reprinted in the U.S. by Open Court Publishing Company, LaSkitejs, 1948).
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integrals with a large parameter. In the saddle point method, we deviate from

the rigorous approach of finding the path of steepest descent. Instead, we advocate

finding just a path of descent, as this may somewhat reduce the solution’s chores.
Chapters 9 and 10 address the subjects of regular perturbation and singular
perturbation. Chapter 9 is devoted to the topic of boundary layers, and Chapter 10

covers the topic of small nonlinear oscillations.

Throughout this book | emphasize a central theme rather than peripheral de-
tails. For instance, before discussing how to solve a class of advanced problems,
| relate it to the basics and, when possible, make comparisons with similar but
more elementary problems. As | demonstrate a method to solve a certain class of
problems, | start with a simple example before presenting more difficult examples

to challenge the minds of the students. This process gives students a firmer grasp

of the subject, enabling them to acquire the key idea more easily. Hopefully, ours
will make it possible for them to do mathematics without the need of memorizing

a large number of formulae. In the end | hope that they will know how to approach
a general problem; this is a skill that leaves students better prepared to treat prob-
lems unrelated to the ones given in this book, which they’ll likely encounter in their

future academic or professional lives.

During my classroom lectures, | emphasize interaction with the students. | of-
ten stop lecturing for a few minutes to pose a question and ask everyone to work
throughiit. I believe this method helps to encourage students to learn in a more thor-
ough way and to absorb concepts more effectively, and this book reflects that inter-
active approach; many “Problems for the Reader” are found throughout the text. To

deepen their understanding of the themes that they're learning, students are encour-

aged to stop and work on these probldsd®relooking at the solutions that follow.

This book also passes on to learners some of the problem-solving methods
I've developed through the years. In particular, parts of Chapters 9 and 10 offer
techniques, which | hope will benefit students and researchers alike. Indeed, |
believe that the renormalization methods given in Chapter 10 are more powerful

than other methods treating problems of non-linear oscillations so far available.

| am indebted to the group of students who encouraged me to publish this
book. Several students have read the field test version of this book and have given
me their very helpful suggestions. They include Michael Demkowicz, Jung Hung
Lee, Robin Prince, and Mindy Teo. Also, Dr. George Johnston read Chapter 7
and gave me very useful comments. | want to thank Professor T. T. Wu of Harvard
University, who introduced me to the saddle point method several decades ago with
a depth | had never fathomed as a graduate student. | thank Mr. David Hu for the
graphs in Chapters 2 and 8. Special thanks are due to Dr. Dionisios Margetis for
graphs in Chapter 9 and the compilation of an extensive bibliography, and to Mr.
Nikos Savva for graphs in Chapters 3 and 9. | also am truly grateful to Professor
John Strain for his inexhaustible efforts in reading through all of the chapters in the
first draft. | am greatly indebted to Dr. H. L. Hu for the many graphs he tirelessly

drew for this book.

-
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Chapter 2

Complex Analysis

A. Complex Numbers and Complex Variables

In this chapter, | give a short discussion of complex numbers and the theory of a
function of a complex variable.

Before we get to complex numbers, let me first say a few words about real
numbers.

All real numbers have meanings in the real world. Ever since the beginning
of civilization, people have found great use of real positive integers, say 2 and
30, which came up in conversations such as “my neighbor has two pigs, and |
have thirty chickens.” The concept of a negative real integer-sayis not quite
as easy, but it became relevant when aspe owed anothergoson fivecopper
coins. It was also natural to extend the concept of integers to rational numbers.
For example, when six persons share equally a melon, the number describing the
fraction of melon each of them has is not an integer but the rational nutyviBer
When we add, subtract, multiply, or divide integers or rational numbers, the result
is always an integer or a rational number.

But the need for other real numbers came up as mathematicians pondered the
length of the circumference of, say, a circular city wall. To express this length, the
real numberr must be introduced. This real number is neither an integer nor a
rational number, and is called an irrational number. Another well-known irrational
number found by mathematicians is the consgant

Each of the real numbers, be it positive or negative, rational or irrational, can
be geometrically represented by a point on a straight line. The converse is also
true: a point on a straight line can always be represented by a real number.

When we add, subtract, multiply, or divide two real numbers, the outcome is
always a real number. Thus the root of the linear equation

35
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ar +b=c,

with a, b, andc real numbers, is always a real number. That is to say that if we
make nothing but linear algebraic operations of real numbers, what comes out is
invariably a real number. Thus the real numbers form a closed system under linear
algebraic operations.

But as soon as we get to nonlinear operations, the system of real humbers
alone becomes inadequate. As we all know, there are no real numbers that satisfy
the quadratic equation

z? = —1.

Thus we use our imagination and denétas a root of this equation. While we
have gotten to be comfortable with the imaginary numbhehe concept of the
imaginary number was not always easy. Indeed, even Gauss once remarked that
the “true metaphysics” ofwas “hard.”
The number
a = a+1b,

wherea andb are real numbers, is called a complex number. The numbanslb
are called the real part and the imaginary padpfespectively

While complex numbers might have once appeared to have no direct relevance
in the real world, people have since found that the use of complex numbers en-
ables them to handle more easily many physical problems in classical physics. For
example, electrical engineers use the imaginary nurhbgtensively, except that
they call itj. And at the turn of the twentieth century, complex nhumbers became
almost indispensable with the invention of quantum mechanics.

Let us enter the never-never land of the complex varialllenoted by

z =z 41y,
wherex andy are real variables and
i = 1.
The complex conjugate afwill be denoted as
2f =z —1y.

The variable: can be represented geometrically by the p6int) in the Cartesian
two-dimensional plane. In complex analysis, this same two-dimensional plane is
called the complex plane. Theaxis is called the real axis, and thexis is called

the imaginary axis. Let andf be the polar coordinates. Then we have
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x =rcosf, y=rsinb (r>0).

The variabled is defined modulo an integral @fr. For many functions, the
common way is to definé to be either betwee® and2x or between—7 and .
This will be further discussed in Section E of this chapter.

Expressed by the polar coordinatess

z =r(cosf +1isindh). (2.1)
The Euler’s formula says
¢ = cos @ + isin. (2.2)
Thus we have
z=re?. (2.3)

This is known as the polar form af The quantityr = /22 + 3?2 is called the
absolute value or the magnitudegfwhich is also expressed &§. The quantity
§ = tan~! y/z is called the argument or the phasezof

Incidentally, (2.2) shows thabs # andsin 6 are respectively the real part and
the imaginary part of??, provided tha# is real. Note that the absolute valueetff

is
Vcos?6 +sin? 6 = 1.
If we setf = 2nm in (2.2), wheren is an integer, we get

el2n7r - 1.

This result can be understood geometrically. The complex nueib&r has the
phase&nr, and is hence located on the positive real axis. This complex number has
the magnitude unity, and is hence one unit distance away from the origin. Therefore
itis equal tol.

Settingd in (2.2) to(2n + 1), wheren is an integer, we get
ei(2n+1)7r - 1.
Geometricallye'>» D7 has the magnitude unity and the phée+ 1), and

is hence located at the negative real axis one unit distance away from the origin.
Therefore itis equal te-1.
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Settingn = 1, we have

e = —1.

As we have mentioned,andx are irrational numbers and there is no simple
formula connecting these two numbers. Yet after we introduce the imaginary num-
beri, which is a figment of our imagination, these three numbers are neatly joined
together.

Since the argument afis defined modulo an integral multiple ®#, the polar
form (2.3) can be written as

5 = rei(9+2mr) (2 .4)

?

wheren is an integer. Indeed, we have just shown that the fa¢tsf in (2.4) is
equal to unity and hence (2.4) agrees with (2.3).

® Problem for the Reader

Where is the complex numbét + i) in the complex plane? What are the pha
and the magnitude dfl + ¢)?

12
D

€& Solution

The Cartesian coordinates of the complex nuniler i) are(x, y) = (1,1). Thus
we put a dot on the poir(tl, 1) in the zy-plane to represent this complex number
geometrically.

Inspecting the location of this dot, we find that the phase and the magnitude of
1 + 4 arewr /4 andy/2, respectively.

The polar form is particularly convenient to use for carrying out the operations
of multiplication or division of complex numbers. Let

21 =110, 29 = 19e'®?,

then

’i(91+92 e’i(91792) .

2122 = Tr1T2e€ )7 21/22 = (7”1/7”2)

The formulae above say that the absolute value of the product (ratio) of two
complex numbers is equal to the product (ratio) of the absolute values of these
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complex numbers, and the phase of the product (ratio) of two complex numbers is
equal to the sum (difference) of the phases of these complex numbers. These oper-
ations would have been a little more cumbersome to carry out if we had expressed
the complex numbers with the Cartesian form.

Needless to say, using the polar form to do multiplication and division of more
factors of complex numbers is even more laborsaving. In particular, we have

M = Tmesz — Tm(

cosmb + i sinm@).
Settingr = 1, we obtain from the formula above that

(cosf + isinf)™ = cosmb + i sinm@.

This single identity contains a number of identities we are familiar with. For
example, choosing to be2, we get from this identity

cos? 0 — sin? 6 + 2i cos 0 sin§ = cos 260 + i sin 26.

By equating the real parts as well as the imaginary parts of the two sides of the
eguation above, we get the familiar identities

cos 20 = cos® f — sin® 0

and
sin 20 = 2 cosfsinf,

which expressos 20 andsin 26 as quadratic forms afos # andsin 6.

©® Problem for the Reader

Find the roots of the equation
e =1.

€ Solution

Let us call
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then the equation under consideration is
e’ = 1.

This problem is easily solved if we write the equation as

v — 62717”’

wheren is any integer, and equate the exponents of the two sides of the equation.
We get

w = 2nmi,

or

e® = 2nmi,

wheren is any integer. We shall solve the equation abovezfolf n = 0, the
equation above is

ef =0.

Since|e®| = e®, which is never equal to zero unlesss equal to minus infinity,
e* = 0 has no finite root.
If n > 0, the equation above is

eF = 6ln(2n7r) 6i7r/262m7ri.
Equating the exponents of the two sides, we get

z =In(2nm) +in(1/2 4 2m),

wherem is any integer.
Similarly, if n < 0, we get

z=1In(2|n|7) 4+ in(—1/2+ 2m).

There are a doubly infinite number of solutions for equatitn= 1.

® Problem for the Reader

Find the phase and the magnitude of the power functfgrwherea is a number
that is not an integer.
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& Solution

We again use the polar form (2.4) ferand get
2% = [Te"(‘%m”r)} ‘o rael0+2nma (n=0,£1,£2,---).

The identity above shows that the magnitude:%fis ¢, and the phase of* is

equal to(# + 2nm)a, which has infinitely many values. Whiteis an integerna

is not necessarily an integer. Thei$”™® is not necessarily equal to unity and

generally has infinitely many values.

Exceptions occur when is a rational number. Consider for exampl&'2.
Settinga = 1/2 andz = 1 in the expression above, we get

112 = ™™ = 1, n even,

= —1,n odd,

which is the familiar result that the equatieh= 1, or z = 1!/2, has two roots1
and—1.
Similarly, settinga = 1/N andz = 1, we find thatl!/V is equal to

eQnm/N,nzo,l---(N—l),

with the other integral values of giving no new roots. This corresponds to the
familiar result that the equation

wN =1
hasN roots.
B. Analytic Functions
Consider the limit Af
i @)

for a complex-value functiorfi(z), where

Af = f(z+ Az) — f(2).
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The limit of the ratio above, if it exists, is called the derivativef@t), and is
denoted ag’(z).

The functionf(z) is said to be analytic af, if f/(z) exists in a neighborhood
of zp.The functionf(z) is said to be analytic in a regiaR in the complexz-plane
if f'(z) exists for every point in R.

While (2.5) resembles the definition of the derivative of a function of a real
variablezx

’ Af
F@) = i A
there is a substantive difference between them. The point igthags both a real
part and an imaginary part, i.e\z = Az + iAy. Therefore, iff(z) is to have a
derivative, the limit of (2.5) is required to exist for ady andAy, as long as both
of them go to zero. There is no restriction, for example, on the ratihgfAz,
which may take any value. This is a strong condition on the funcfian.
A strong condition has strong consequences. Let

f(2) = u(z,y) + iv(z,y),

whereu andv are the real part and the imaginary partfdt), respectively. Then
the expressionin (2.5) is
Au+ iAv
A Azt iAy’ (.6)
where

Au=u(z + Az, y + Ay) —u(z,y),

and similarly forAwv.
We first consider the limit of (2.6) with z real, i.e.,Az = Az. Then the limit
of (2.6) is equal to

. AutiAv
lim ———

Aim AL = Uy + vy, (2.7)

y fixed

whereu,, for example, is the partial derivative afwith respect tar. Next we
consider the limit (2.6) withAz purely imaginary, i.e.Az = iAy. We have
. Au+iAv
lim ——— =

(uy + ivy)
Ay—0 1Ay ' '

(2.8)

x fixed ?
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If f(z) has a derivative, the expressions of (2.7) and (2.8) are, by definition, the
same. This requires that
Uy = Vy, Uy = —VUg. (2.9)

The equations in (2.9) are known as the Cauchy-Riemann equations. The real part
and the imaginary part of an analytic function must satisfy these equations.

While we have only required that the limit of (2.5) is the same witheither
purely real or purely imaginary, it is straightforward to prove that this limit is the
same for any compledAz when the Cauchy-Riemann equations are obeyed. (See
homework problem 1 of this chapter.)

Differentiating the first Cauchy-Riemann equation with respeat wwe get

Ugy = Vyg-

Differentiating the second Cauchy-Riemann equation with respecite get
Uyy = —Vay-
Adding these two equations together, we get
Ugy + Uyy = 0.

The equation above is called the Laplace equation. We have shown that the real
part of an analytic function must satisfy the Laplace equation.

We may similarly prove that, the imaginary part of an analytic function, also
satisfies the Laplace equation.

The Laplace equation is an important equation in physical sciences. From what
we have just discussed, one may find the solution of a two-dimensional Laplace
equation satisfying certain boundary conditions by looking for the analytic function
the real part (or the imaginary part) of which satisfies these boundary conditions.

A function satisfying the Laplace equation is said to be harmonic. Thus the
real part and the imaginary part of an analytic function are always harmonic. We
call u andv the harmonic conjugate of each other.

® Problem for the Reader

Find the real part and the imaginary part &f and show that they satisfy the
Cauchy-Riemann equations.
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& Solution
We have

e* = T = e%eW = y(x,y) + iv(z,y).

Using Euler’s formula foe®, we get
u(a:, y) = e’ cos y, U(m, y) = e siny.

Thus
Uy = e’ cosy, uy = —e’siny,
vy = e¥siny, vy = e cosy.

We see that: andv satisfy the Cauchy-Riemann equations for all values dthus
the functiore® is analytic for all values of. Incidentally, a function that is analytic
at all points in the finite complex plane is called an entire function. of

® Problem for the Reader

Is the functionf(z) = zz* analytic?

€& Solution

For the functionzz*,
u(z,y) = 2>+ y°, v(z,y) = 0.

We have

Uy = 2T, uy = 2y, vz = vy = 0.

Thus the Cauchy-Riemann equations are not satisfied except at the origin, which
is but a point, not a region. Since the derivative of the function exists for no neigh-
borhood of the origin, it is not analytic, even at the origin.

An intuitive way to understand whyz* is not analytic is to think of this func-
tion as dependent og*.We shall show that an analytic function is independent
of z*.
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To see this, let us first mention that we usually thinkdto be dependent on
z, and a function ot andz* is just a function ok. Indeed,

Az = Ax + 1Ay, Az" = Az —iAy.

Since the magnitude oAz is equal to that ofAz*, we conclude that ifAz is
nonzero,Az* is nonzero, which makes it impossible to varyvhen keeping:*
fixed.

But this is true because we have imjilic accepted the premise that bakx
andAy are real. As a matter of fact, thatz* = 0 implies

Ax = iAy.

Therefore, ifAxz and Ay are allowed to be complex, it is possible to have be
nonzero withAz* equal to zero. For example, whéyy is real, Az* is zero if Az
is equal to the imaginary numbghy. With this provision we may regardandz*
as independent variables.

We have

z+2z* z—2z*
€r = y Y= A
2 21

A function of the two variables andy can now be considered as a functionzof
andz*. The partial differentiation with respect tocan be defined with the chain
rule of partial differentiation. We have

6 _929 oo _1(8 .0
0z 0z0x 020y 2 \0z Z(?y '

9 _1/(90 0
0z 2\ 0z Oy)’
Let us now get back to the point that prompted this discussionf beta complex-

valued function ofc andy. Let the real part and the imaginary partfolbe denoted
asu andwv, respectively. We have

Similarly,

Up — Uy + 1(Uy + V)

0 170 .0 .
8z*f:§(%+18_y)(u+w): 5 .
If fis an analytic function, then andv satisfy the Cauchy-Riemann equations
and hence
0 F=0
oz* ’

This says that an analytic function is independentof
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@® Problem for the Reader
Show that
02 02 0o 0
=4
0x? = Oy? 0z 0z*
€ Solution

W00 (9 oN(o  oN_(& &
0z0z*  \ Oz oy Ox oy) \ az?  0y?)’
It follows that the Laplace equation can be written#5—v = 0, and the
solution of the Laplace equation is the sum of a function ahd a function ot*.

Next, we give a few examples of functions that are analytic. The power func-
tion z™ with n an integer is analytic. While this result may very well be expected,
| will give it a proof below. We have, by expressiig+ Az)™ with the binomial
expansion,

. (z+ Az — 2" on2" Az
lim = lim ————,
Az—0 Az Az—0 Az

where the terms unexhibited are at least as small as the square dfhe limit
above exists for all\z, and we get

d

L n—1
dz

=nz"

which is the same formula we learned in calculus. Thus the derivative of the power
functionz™ exists for all values of. Thereforez™ is analytic for all values ot,
or is an entire function of.

Since the power functiogf® is analytic, so is the linear superposition of a finite
number of power functions. Indeed, so is the sum of an infinite number of power
functions, as long as this sum is absolutely convergent. Conversely, we shall show
in Section C that a function analytic at a poigtalways has a convergent Taylor
series expansion aroung.

We have learned in calculus that the Maclaurin seriesifor is

sine =2 —23/(3!) +2°/(5!) +---.




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

C. THE CAUCHY INTEGRAL THEOREM 47

Let us replace: in the series above byand definain z to be this series, i.e.,
sinz=z—22/(3) +2°/(B) +---. (2.10)
Similarly, we define
cosz=1—22/20+ 24 /4l ... (2.11)
We shall use the ratio test to prove that the series in (2.11) is absolutely convergent

for all values ofz. Let thent® term in the series of (2.11) kg,. Then the ratio

an 22

an_1  (2n—2)(2n - 3)

vanishes in the limit. — oo for all values ofz. Since the ratio of the'® term and
the (n — 1)*® term vanishes as — oo for all z, the ratio test asserts that the series
of (2.11) converges absolutely for all values:ofThereforecos z defined by (2.11)
is meaningful for allz. Being the same a%sx whenz = x, cosz is called the
analytic continuation ofos x into the complex plane. The analytic continuation of
a function from the real line into the complex plane is unigue. (For more general
considerations of analytic continuation of a function, see homework problem 9.) In
the case ofos z, this means that the function defined in (2.11) is the only function
possible that is analytic everywhere and agrees witlx whenz = .

Similarly, the series in (2.10) is absolutely convergent forzallTherefore,
sin z defined by (2.10) is the unique analytic continuationsiafz into the com-
plex plane.

C. The Cauchy Integral Theorem

The contour integral
1= [ £y

wherec is a contour in the complex plane, is defined to be

/ (u+ i) (dz + idy) = / (udz — vdy) + i / (udy + vdz). (2.12)

Cc Cc Cc

We note that the two integrals on the right side of (2.12) are line integrals in the
two-dimensional plane, which we already encountered in calculus.



SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

48 COMPLEX ANALYSIS

An example of a line integral is the work done by a force. As we know,
the work done by moving a patrticle frofx, y) to (z + Az, y + Ay) against a
force . _

? =M(z,y)i + N(z,y) j

is equal to the scalgroduct of the force witlthe displacement vector
A:U7 + Ay?.
Thus the work done is
M(z,y)Az + N(z,y)Ay.

Therefore, ifA and B are two points in thecy-plane, the work done in moving
a particle fromA to B along a path: against the force is equal to the line integral

/C (Mdz + Ndy).

We also recall thaf2 is known as a conservative force if the curlﬁfvanishes.
Equivalently,? is a conservative force if there exists a poteritiatuch that

F=_Vv

If I_?> is conservative, the work done in moving a particle from one point to another
depends only on the difference of the values of the potential at these two points,
and is independent of the path. To say this more precisely, let the poteérgiabt

in a regionR in the two-dimensional plane; then

/C (Mdz + Ndy) = / (Mdz + Ndy),

Cc2

provided that; andc, are two curves with the same endpoints and both lie inside
R.
If the potentiallV exists, we have

M =-V,, N =-V,

and hence
My = N,. (2.13)

The converse is indeed also true: if (2.13) holds in a redipthen the force is the
gradient of a potential.
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Y

Figure 2.1

Now for the first line integral in (2.12{/ isu andN is —v. Thus the condition
(2.13) for this line integral is the second Cauchy-Riemann equation. For the second
line integral in (2.12) M isv and N is « . Thus the condition (2.13) for this line
integral is the first Cauchy-Riemann equation. The contour intdgiral(2.12) is
therefore path independentfifz) is analytic. More precisely, let; andc, be two
curves, both join the lower endpoing to the upper endpoint; in the complex
z-plane, and both lie inside the regidhwhere f(z) is analytic. Then we have

/Cl F(2)dz = /02 F(2)dz. (2.14)

Equation (2.14) tells us that we may deform the contquo the contour,, where
c¢1 andcg have the same endpoints, provided th@t) is analytic in the region lying
betweerc; andes.

The contourg; andc, in (2.14) are open contours. We shall extend (2.14) to
closed contours. Lat andc’ be closed contours of the same sense of direction,
i.e., either both counterclockwise or both clockwise, with no singularitie& of
lying between: andc’. We choose a poingy on ¢ and think of the closed contour
¢ as a contour joining the poing to itself. Let us draw a line joining, to a
point z, on ¢/, forming a bridge betweea andc’. Then we may think of’ as
another contour joining to itself. This is becausé€ is the contour that begins at




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

50 COMPLEX ANALYSIS

\ 4

Figure 2.2

20, crosses the bridge tg, and followsc’ to return toz, then crosses the bridge

in the reverse direction to finally come backAp As the bridge is crossed twice

in opposite directions, the two contour integrals associated with the contour of the
bridge cancel each other. Thereforecan also be considered as a closed contour
joining zg to itself, and by (2.14) we have

%f(z)dz = 7( F(2)dz, (2.15)

where the symbo§ denotes an integration over a closed contour.

Equation (2.15) says that the conteucan be deformed intd provided that
f(z) is analytic in the region lying betweerandc’.

Let us go fromzg to z; along contouk; in Figure 2.1, then go from; back
to zo along—co, Which isc, in the reverse direction. The contaue= ¢; — cp isa
closed contour. Thus (2.14) can be written as

ff(z)dz =0 (2.16)
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provided thatf(z) is analytic in a regiorR andc is a closed contout inside R.
Equation (2.16) is the Cauchy integral theorem.
Next, we consider the integral

In:]{diz,
c (Z—Z())n

wherec is a closed contour in the counterclockwise direction and a positive
integer. The integrand blows up at= z;. We say that the integrand has a singu-
larity at zo. More generally, if a single-value functiof{ z) is not analytic at point
20, then we say thaf(z) has a singularity at.

If ¢ does not enclosg, I,, vanishes by Cauchy’s integral theorem. But if
enclosesy, as is illustrated in Figure 2.3, we may deform the contour into the
circle C'r without crossing any singularity of the integrand, whétgis the circle,
the center of which isg, and the radius of which (8.

Now a pointz on Cp, satisfies

|z — 29| = R,
and hence the polar form af— z; is

z— 2y = ¢ R.

Thus we get '
dz = ie Rdo.
Therefore, we have )
lez—;i—l/j ei1=1)0 g,
Rnfl 0

The integral above is easily calculated. Indeed, we have

2
/ =040 = o7t m =1,
0
=0, n#1.

Thus we conclude that, i is inside the closed counterclockwise conteuwe
have

I, =2mi, n=1,

=0,n+#1. (2.17)
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A
CR
c

A

>
Figure 2.3

Equation (2.17) enables us to derive the Cauchy integral formula, which says that
if f(z) is analytic in the regiorR, and ifz is an interior point ofR, then we have

flz) = &) g (2.18)

= -
2mi J. 2 — 2

provided that is a closed curve enclosingnce in the counterclockwise direction
and lying insideR. To prove this, we deform the contoainto the circlec, with
center at and radiug. This is allowed, as the integrand of (2.18) is analytic in the
region lying betweer andc,.. As we make: approach zero;’ approaches and

the integral approaches
—f(z)j{ —1 dz.
2mi Jo, 2 — 2

By (2.17), Cauchy’s integral formula is proved.
Differentiating the Cauchy integral formula with respectztowe obtain the

derivative of f as
fl(z)= L j{(f(iz)de’.

2ri J, (2 — 2)
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C
C
s Z
Figure 2.4

By differentiating the Cauchy integral formutamore times, we get

n ! f& /

Thus if a function of a complex variable is analytic, it has derivatives of all
orders. But by definition, a function of a complex variable is analytic if it has the
first derivative; thus a function of a complex variable has derivatives to all orders if
it has the derivative of the first order.

This may seem surprising to readers who have learned in calculus that if a
function of a real variable: has a first derivative, it does not necessarily have
a second derivative, not to mention even higher-order derivatives. The seeming
contradiction is resolved by the fact that the existence of the derivative of a function
of a complex variable requires a stronger condition than that of a function of a real
variable.

We may now prove that a functiofi(z) analytic atzy has the Taylor series
expansion
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0 £(n)(,
f =37 (, 0~ o), (2.19)
n=0 :

n

wherez lies in a neighborhood of; to be specified later. To prove (2.19), we
choosec in (2.18) to beC'g, the circle with center aty and radiusk, whereR is
sufficiently large so that encloseg. Now if 2’ is a point onCg,

12" — 29| = R.
Also, sincez is insideCRp,

Y

Figure 2.5

|z — 20| < R.

Thus we have
|z — 20|/]2" — 20| < 1.

Now
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— 2 -1
(Z—2)" = [ —2) — (2 — zo)]fl = (2 — 27! <1 i > .

' — 2z

As we know,(1 — w)~! is equal to the convergent series
> "
n=0
provided thatw| < 1. Identifyingw with (z — z0)/(2' — zp), we have,

= ()

n=0

Substituting the expression above into (2.18), we obtain the Taylor series expansion
(2.19).

The contourCr is a circle inside whichf(z) is analytic. ThusCg is not
allowed to enclose any singularity ¢tz). Let z; be the singularity of (z) closest
to zp; then the largest value a® possible is|zg — z1| . Therefore, the radius of
convergence of the Taylor series (2.19)4g — z1|.

As an example, sinceinnzm vanishes for any integral value, the function
z(sin7z)~! has singularities at = n, wheren is any integer not equal to zero.
The pointz = 0 is not a singularity ok (sin 7z) ! because the numerator of this
function vanishes at = 0. Indeed, by I'Hopital’s rulez(sinwz)~! is equal to
7~1atz = 0. Let us consider the Maclaurin series fgsin7z) 1. Since the
singularities of(sin 7z) ! closest to the origin are = +1, this series converges
in a circle with center at the origin and radius unity.

As another example, we have shown that the functfois an entire function.
Therefore, we know that its Maclaurin series

2

z z
R TR (2.20)

converges for all finite values af This may also be directly verified with the use
of the ratio test.

e =1+

® Problem for the Reader

Show that
sin(iz) = isinh z, cos(iz) = cosh z.
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€& Solution

From the Maclaurin series (2.10) fah z we get
sin(iz) =i [z 4 2°/(3!) + 2°/(5!) + - - -] = isinhz.
In a similar way, we get

cos(iz) = 1+ 22/2! + 2% /4l + - - - = cosh 2.

From (2.10), (2.11), and (2.20), we find
e = cosz +isinz, (2.21)

which is Euler’s formula for a complex argument. Replacirig (2.21) by—z, we
have

e ¥ =cosz —isinz.

Therefore,
cosz = %, (2.22)
and ' '
sinz=°""_° (2.23)
21

Whenz = z, (2.21), (2.22), and (2.23) are identities already established in calcu-
lus. We now see that they also hold wheis complex.

As we have mentioned, an equality between analytic functions valid for real
z = z is invariably valid where is complex. This is a result of the uniqueness of
analytic continuation. But a nonanalytic relation that holds whenzx often does
not hold when is complex. For example, the inequality

—1<sinz <1
does not hold whemis replaced by the complex variaklelndeed, ifz is complex,

sin z is not even a real number. Note also thiatz is not the imaginary part af*
whenz is complex, nor isos z the real part ot** whenz is complex.
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If f(z) is not analytic atzy, it has no derivative aty, and naturally has no
Taylor series expansion arouggl But it may have another kind of series expansion
aroundz. As an example, consider the functif(z) = el/#, which is not analytic
atz = 0. Nevertheless, we have by (2.20) that

Mo1p iy Lo (2.24)
z 2122

The series above is not a Taylor series, as it is not a sum of positive power functions.
Instead, it is an example of a Laurent series defined by ((2.25)) below. Since the
series fore* converges for all finite, the Laurent series far'/# converges for all
z #0.

More generally, an analytic function has a Laurent series expansion around
an isolated singularity, which we shall define as follows. kghe a singularity of
f(2), andz; be the singularity of (z) closest tay. If |29 — 21| is not equal to zero,
thenz is called an isolated singularity ¢gf(z). Not all singularities of an analytic
function are isolated. For example, the singularites of the fundticin(w/z) are
located at: = 1/n, n = 0,+1,£2, - - -, wheresin(w/z) vanishes. Sinceé/n for
n arbitrarily large is arbitrarily close to the origin, the point 0 is not an isolated
singularity of1/ sin(7/z).

If zo is an isolated singularity of(z), we may prove with the use of the Cauchy
integral formula thayf (z) has the Laurent series expansion

(e o]

f(z) = Z an(z — 29)", (2.25)

n—=—oo

which contains not only positive powers ©f — z(), but also negative powers of
(z — 20).

The series (2.25) is convergent at every point, with the exception of the point
20, inside the circle with the center g and with the radiugzg — 21| , wherez; is
the singularity off(z) closest taz. This can again be proven with the use of the
Cauchy integral formula (2.18). (See homework problem 12.)

We note that the difference between a Taylor series and a Laurent series is that
the latter has negative power functiofxs— zo) ™", wherem > 0. These power
functions blow up at = z,. Indeed, the larger is, the faster the power function
blows up as: approachesy. If the term in the series that blows up the fastestis a
(z — 29)~N term, then we say that the function has a pole of ofdet z.

If the Laurent series of (z) has nonvanishin@z — zo) ™™ terms of arbitrarily
largem, f(z) is said to have an essential singularitg@tAn example is the series
of (2.24), which has an essential singularity at the origin.
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Let us integrate the Laurent series over a closed contthat encloses, but
no other singularities of (z). Let the direction ofc be counterclockwise. By
(2.15), all terms in this series except the term

a_1/(z— z0)

are integrated to zero. Thus we get

i{cf(z)dz = 2mia_1. (2.26)

This is known as the Cauchy residue theorem. The coefficientis known to
be the residue of (z) at zp, which we shall denote as Reg). If the contour is
clockwise, the integral will be equal to the negative2af times the residue.

This formula is one of the most useful formulae in complex analysis. It tells
us that the value of an integral over a closed contour can be obtained by simply
evaluating the residue of its integrand.

If the contourc encloses more than one singularityf@t), we replace the right
side of (2.26) by the sum of residuesfifz) at these singularities. (Why?)

Before we close this section, let us show how to evaluate efficiently the residue
of f(z) at zp where the function has a pole of the first order, which is called a
simple pole. If the singularity of (z) at zy is a simple pole,

a_
f(2) = == Fap+a(z—20) + -
zZ— 20

Thus the residue of (z) atzy is equal to

Res(z9) = lim (2 — 20) f(2). (2.27a)

Z—20

As an example, let us calculate the residue’gkin z atz = 0. We have by (2.27a)
that

ze?

Res(0) = lim

20 sin 2z

We see that both the numerator and the denominator vanish-as0; thus we
apply I'Hopital’s rule and get

z z
Res(0) = lim &+ 2%
z——0 cosz

Sinceze® vanishes as — 0, we have




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

by Hung Cheng ISBN: 0975862510
D. EVALUATION OF REAL INTEGRALS 59
eZ
Res(0) = lim =1.
z—0 COS z

Note thate® /cos z is obtained frome* /sin z by replacing the denominator of the

latter function with the derivative of its denominator. Thus we may dispense with

the formula (2.27a) and calculate the residue by differentiating the denominator.
More generally, letf(z) = g(z)/h(z), whereg(z) andh(z) are analytic aty.

If h(z) has a simple zero a, thenf(z) has a simple pole a}. By (2.27a), we

obtain with the use of I'Hopital’s rule that the residuefdk) at z is

Res(zo) = 20 (2.27b)
If f(2) has a double pole af, the Laurent series expansion pfz) in the

neighborhood oty is

a_o a_q
(z—20)% z—2

f(Z): +a0+a1(z—zo)+---.

In this case, the limit on the right side of (2.27a) is equal to infinity, not the residue
of f(z) atzy. To eliminate the singularity at, we multiply f(z) by (z — 2)? and

get

(z—20)%f(2) =a_a+a_1(z — 20) + ao(z — 20)*> + - -~

The expression above is finite in the limit— z, but this limit is equal tax_»,
nota_;. To obtaina_1, we differentiate the expression above and then setz,.
We get
. d
a_y = lim — [(z — z0)2f(z)} .

zZ—20 dZ

D. Evaluation of Real Integrals

The Cauchy residue theorem provides us with a tool to evaluate a number of inte-
grals in the real world, the integrands of which are functions of a real variable and
the integration is over real values of the variable. Some of these integrations are dif-
ficult to carry out in closed form with the methods provided by calculus. We shall
show that, by going into the never-never land of the complex plane, sometimes we
can find the closed forms of these integrals.
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As an example, let us consider the integral

*  dx
I= —_— . 2.28
/oo 1+ 22 ( )

While this integral can be evaluated with calculus, we shall use it as an example to
demonstrate how to do real integrals with contour integration.

We regard this integral as a contour integral over the real axis of the complex
plane. But we cannot as yet apply the Cauchy residue theorem to it, as the real axis
is not a closed contour. Let us think of the real axis as the contour f@ho R
along the real axis, in the limit @ approaches infinity. We add to this contour the
counterclockwise semicircle in the upper half-plane with the origin as the center
and R the radius. (See Figure 2.6.) Now we get a closed contour which we shall
call c. As we shall see, the integral over the semicircle vanishes in the limit of
R — oo. Thus the integral of (2.28) is equal to the integral ovelSincec is a
closed contour we may apply the Cauchy residue theorem to the integral. The only
singularity of the integrand enclosed bys z = i. Thus we have by (2.27b),

1
I =27iRes(i) = 27ri? = .
i

To finish the argument let us show that the contribution of the semicircle is zero
in the limit R — oo. If z is a point on the semicircle,

z:ewR,Ogng.

WhenR is very large, the integrand/ (1 + 22) is approximately equal tb/ 22, the
magnitude of which id /R2. We also have

dz = ie" Rd6. (2.29)

/ dz (" "Rdb
cn 1+2% Jo R2e20

where Cr is the semicircle in the upper half-plane. In the linfit — oo, the
integral above vanishes, as there are two factor® @ the denominator of the
integrand and only one factor &f in the numerator of the integrand.

We may also close the contour of the integral in (2.28) by adding to it the
semicircle in the lower half-plane in the clockwise direction. The only singularity
enclosed by this contour is the onezat —i. Thus we have

Thus we have
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Y
X i
X
— > ]
Figure 2.6

I = —2mi Res(—i) = —27rii, =,
—21
which is the same answer. Note that the first minus sign above is due to the fact
that the closed contour is clockwise.

One of the first things we do in applying the Cauchy residue theorem is to make
sure that the contour is a closed one. If the contour is not closed, try to close it if
possible. The second step is to locate the singularities of the integrand enclosed by
the contour, and calculate the residuéthe integrand atach of the singul#ies.

® Problem for the Reader

Evaluate the integral

b dx
I= /oo (@ —i)(z—20) (@ —3)(z — &)’
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€& Solution

We may close the contour upstairs by adding to the contour of integration the semi-
circle in the upper half-plane. This is justified, as the contribution of the semicircle
of radiusR is of the order of

R/R*,

where the numerator factdt comes fromdz given by (2.29) and the factd@? is
the order of the denominator of the integrand wheis large. Thus the contri-
bution of the semicircle vanishes & — oco. With the semicircle included, the
contour is closed and encloses the four singularities of the integrand located at
2i, 3i, and4i. Therefore, we may obtain the value bby adding up the residues
at these singularities.

It is far simpler, however, to evaluate this integral by closing the contour down-
stairs. The contribution from the semicircle in the lower half-plane vanishes as
before. Since the integrand has no singularities in the lower half-plane, we get

I=0.

For the integral

0 dx
L= /oo (@1 0) @ —20)(z — 30)(z — 4)’

the integrand of which has three poles in the upper half-plane and one pole in the
lower half-plane, it is easier if we close the contour downstairs. This is because if
we do so, we need to evaluate only the residue-at—i.

For other integrals, there is no way to close the contour before we make some
changes. Consider

o0
= / 8T (2.30)
oo L4 22
We emphasize that it is impossible to close the contour for the integral of (2.30)
either upstairs or downstairs. The culprit is the factgrz in the numerator of the
integrand. Whilecos z is of finite values between1 and1, no matter how large
x IS, cos z is very large wherr is complex and large. To see this, we have from
(2.22) that
eimfy + 67im+y
2

COSz =
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The first term on the right side of this equation blows up ifjoes to—oo, and
the second term on the right side of this equation blows upgbes toco. Thus
cos z blows up exponentially when eithgr— oo ory — —oo. As a result, the
contribution from the infinite semicircles, either the one in the upper half-plane or
the one in the lower half-plane, is not zero.

Now we note that

cosT = Re e"*.

Since(1 + z?) is real, we have
I =ReJ,

where

o] eix
J= / o du.
oo L+ 2

It is possible to close the contour upstairs for the intedralse’* = e is ex-
ponentially small wheny — oo. Therefore, we are allowed to close the contour
upstairs. A more detailed discussion of this can be found in Appendix B of Chap-
ter 8. The only singularity of the integrand enclosed by this contouris-at. We
easily get, using (2.27b),

12

e T
J = 2mi Res(i) = 2mi 2z|
Hence we have
* coszx T
I = ——dx = —. 2.31
/oO 1+2277 7 ¢ (2.31)

Alternately, we may make use of the relation

cost = Ree ™

and get
I =ReK,

where

o] ef'i:r
e [
o L+
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Sincee™** = ¢~%*¥ vanishes ag goes to minus infinity, we may close the contour
downstairs for the integrdl’ and get the same answer far

® Problem for the Reader

Evaluate the integral

* rsinzx
I= —dx. 2.32
/001+x2 v (2.32)

€ Solution

Again, the first step is to make the contour a closed contour. If this is done, we may
evaluate the integral by the use of Cauchy’s residue theorem.

But it is not possible to close the contour either upstairs or downstairs with the
factorsin z in the numerator. This is because, just like the magnituderet,
the magnitude ofin z is exponentially large ifj, the imaginary part of, is large,
regardless of whetheris positive or negative.

Let us try another way. We have

sinz = Ime™,
and since the other factors of the integrand are real, we get

I =TImJ,

[e’s) i
J:/ %dx.
o 1+

We close the contour upstairs and get, using (2.27b),

where

e T
J =2m = —.
m 21 e

* rsinzx T
I = dr = =, 2.33
/001+x2 T (2.33)

Thus
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Next we consider the integral
I:/ ST e, (2.34)

x

—0oQ
Note that, although its denominator vanishes at 0, sinz/x is finite atxz = 0,
as its numerator vanishesat= 0 as well. Indeedsin z/z is an entire function of
Z.
Again, it is not possible to close the contour of integration withx as the
numerator. So let us try the trick of replacifidpy the imaginary part of, where

J:/ i
o T

But the integrand of/ blows up atx = 0. This is because the denominator of
the integrand vanishes at = 0, while the numerator of the integrand does not.
Therefore, the integral is divergent and meaningless, and the trick of replacing
sin z with e** fails.

Since the origin is a troublesome point, let us deform the contour away from
the origin. This is possible as the integrasid z/z is analytic atz = 0. It does
not matter what precisely the contour is. We may, for example, deform the contour
into ¢, wherec goes from—oo to —1 along the real axis, from-1 to 1 along a
curve lying in the upper half-plane, and frairo oo along the real axis. Thus we
have

Y

Figure 2.7

I:/szdz. (2.35)
c z
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By (2.23) we have

I=1+1I,
where
I = /Ldz, (2.36)
¢ 21z
and
I = —/6, dz. (2.37)
e 21z

The numerator of the integrand &f is e**, which allows us to close the contour
upstairs. Since the integrand Bfis analytic in the upper half-plane, we have

L =0.
For the integral; we close the contour downstairs. Since the contour is clockwise

and since the only singularity of the integrand enclosed by the contour is located at
z = 0, we get, using (2.27b),

I = (—2mi) <—%> -

Thus we find

= / S ix = 7. (2.38)
xXr

—0o0

Had we not deformed the contour away from the origin, detand, would have
been divergent integrals, as the integrands of these integrals blow up at the origin.

The contour of integration for an integral is not always the entire real axis, and
it is not always possible to close the contour either upstairs or downstairs. Never-
theless, sometimes we are still able to do so after making some minor changes. As
an example, consider the integral

© dx
/0 Tt (2.39)

the contour of integration of which is the positive real axis only. Now the integrand
of this integral is an even function ef This is to say that the integrandat= —r
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on the negative real axis is equal to the integrandatr on the positive real axis.
Thus we may integrate over both the positive real axis and the negative real axis
and divide the result by two. Therefore, we have

* dz 1 [ dz
. . 2.40
/0 1+ a4 2/ool+m4 (2.40)

Now that the contour of integration is the entire real axis, we may evaluate the in-
tegral by closing the contour either upstairs or downstairs. Let us close the contour
in the upper half-plane. The singularities of the integrand enclosed&feand
e3m/1 \We get, after adding up the residues of these two points,

/ dr__ ¥2m (2.41)
0 1 + fIf4 4
Consider next the integral
*  dr
I= _ 2.42
/0 1+ b (2:42)

Since the integrand is not an even functionagfit will not help if we add the
negative real axis to the contour of integration and divide by two. Instead, let us
consider the integrand on the ray of argumnt5 in the complex plane, i.e.,

z = re?™/b, (2.43)

On this ray,

zZ =T".

Therefore, the integrand at = 7e2™/% is 1/(1 + r°), which is the same as the
integrand at = r on the positive real axis.
Let us therefore consider the integral

dz
- 74 o 2.44
J . 1 257 ( )

wherec is the closed contour consisting of the ray that is the positive real axis
going from zero taR, the ray that given by (2.43) going from= R tor = 0, and
the arc that is of the distand@from the origin and joins these two rays. We shall
take the limitR — oo at the end.

On the arc, the integrand vanishes liRe® asR — oco. On the other hand,
the length of the arc i87R/5, which is merely linearly proportional t&®. Thus
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X
2n
5
> R 7
Figure 2.8

the integrand times the length of the arc vanishe®as+ oo. Therefore, the
contribution from the arc is zero @ — oc.
The integral over the ray of (2.43) in the linfit — oo is related tal of (2.42)

by
/0 627ri/5d,r _ _6271’1'/5[
o L1475 '

Therefore, we have
J=(1-e™]. (2.45)

We may evaluate/ with the Cauchy residue theorem. The singularities of the
integrand are located at

6i(2n+1)7r/5. (246)
The only singularity enclosed hyis e™/%. Thus we have, by (2.27b),

211

= (2.47)
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Hence we get

*© dx J ™
= = . 2.48
/0 14+a® 1—e2m/5 bBsinw/b (2.48)

The exact value ofin 7 /5 can be deduced from the result in homework problem
2.
As the final example of contour integration, we evaluate the integral

2m do
1= _ 2.49
/0 a+bcosf’ (2:49)

wherea andb are positive. We require that > b so that the denominator of the
integrand does not vanish for afly

While the contour of integration is the finite intervi@, 2], which is not
closed, we may transform it into a closed contour by making a change of variable.
We put

z=€".
As 6 varies from0 to 27, z traverses in the counterclockwise direction the unit
circle with the center at the origin. This circle is a closed contour. We have
dz = €?ide,

or J
o=
1z
We also have

1
cosf = E(z +271).
Thus

I ]{ 2dz
~ Je ib(22 +2az/b+ 1)’
wherec; is the unit circle with center at the origin. The singularities of the inte-
grand are located at the zeroes of the denominator of the integrand, which are

z=—a/b++/a?/b? —1.

The singularity enclosed by, is the one above with the plus sign. Applying the
Cauchy residue theorem, we get, by (2.27h),
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2m
do 2
/ - T (2.50)
o a-+bcost /g2 — p2

E. Branch Points and Branch Cuts
Consider the function
logz = log(rew) =Inr+16. (2.51)

Let us start out at the point A in the figure below, follow the closed patim the
figure in the counterclockwise sense, and come back to point A.

N

A 4

.

Figure 2.9

It is clear that while we return to the same location, the valué isf not the
same anymore. Indeed it change#tp 27. Therefore, upon traversing the closed

path, we have
log z — log z + 27i,
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which means thalog z does not come back to its original value. This is true as
long as one defines it to be a continuous function along the closed path.

Note that if we follow the same closed path around the origin in the clockwise
sense and return to the same point, the valu@ ohanges t@ — 2x. Thus the
functionlog z changes tqlog z — 27i). And if the closed path goes around the
origin in the counterclockwise sensdimes,log z changes tdog z + 2nmi.

Thus we have an identity crisis: Which value should we choose to be the value
of log z at A?

It may help us to find the answer to this question if we repeat the considerations
above with the curves in Figure 2.9. We note that the value®tioes not change
as one starts at a point epin the figure, traverses the closed path and comes back
to the starting point. As a consequence, the vallegf does not change after the
closed patle, is traversed.

What is the difference between the pathsandcy? The answer is that;
encloses the origin, while, does not. Since the polar angles the angle of the
position vector joining the origin te, 6 increases bgx as one goes once around
c1, and does not change as one goes arayndAs a consequence, the function
log z changes its value if the traversed patleiswhich encloses the origin, but
does not change its value if the traversed patt,jsvhich does not enclose the
origin. The origin is a special point with respect to the funcliegz; it is said to
be a branch point of the functidag z.

More generally, we define the poigg as a branch point of the functigf{z) if
f(z) changes its value as one traces a closed path enclaging

If we restrict ourselves to an open region that does not include the origin as an
interior point, the functioog z can be uniquely defined in this region. This is be-
cause there is no closed path inside the region that encloses the origin. Therefore,
we may choose a point inside this region and define the valdeabthis point to
be betweer) and2x, say. Then the value d@f for any point inside this region is
uniquely defined, and so is the functitrg z. The designation of the value 6fat
the chosen point is not unique. For example, we may défimiethe chosen point
to be betweerzw and4r, or between—=n andx. The values ofog z in this re-
gion are different with different definitions, but the functilg z is single-valued
with each designation of the value éfat the chosen point. There is, therefore,
more than one consistent definitionlof z in a region. They are called different
branches ofog z.

We may verify that the real part and the imaginary pariogfz satisfy the
Cauchy-Riemann equations everywhere except at the origin. [bgeris analytic
in aregion in which a branch ddg z is chosen and the function is uniquely defined.

Let us cut up the complex-plane by drawing a curve joining the origin to
infinity. To be specific, we shall choose this curve to be the positive real axis. In

-
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the cutz-plane there is no closed contour that encloses the origin. We call the
positive real axis a branch cut hfg z.

Let us start at point A, which is above and infinitesimally close to the positive
real axis, and go along a circle in the counterclockwise sense, arriving at point B,
which is below and infinitesimally close to the positive real axis. Then the value
of log z at B differs from that at A by27i. Thuslog z is discontinuous across
the positiver axis. Nevertheless, if we restrict ourselves in the cplane, the
function is single-valued. This is because the points A and B, separated by the
branch cut, are not regarded as the same point.

This is like thinking of f(z) as a function not on a plane but on a parking
garage that has many levels. Let the point A be the entry point of the garage. Let
us choose the value éfat this point to be zero. As we go around a full circle in
the counterclockwise sense, we arrive not at the entry point of the garage but at
the point one level above it. The valuelog z is taken to be dependent on which
level we are at. Therefore, while the valuded z changes b2ri as we go up one
level, the functionlog z is uniquely defined at each point of the parking garage.

If we go around the garage in the counterclockwise sengmes, we arrive at
the (n + 1)* level of the garage. This level is called the+ 1) Riemann sheet
of the function. Since. can be any positive or negative integeg; z has infinitely
many Riemann sheets.

There is no reason to restrict the branch cut to be on the positive real axis. We
may choose the branch cut to be on the negative real axis. If we start at the entry
point A with § = 0 as before, then we are choosing the branch of the function on
the garage that is half a level below ground and half a level above ground. The
values of# in this branch are betweenn andx. We may, indeed, choose the
branch cut to be any curve joining the origin to infinity in any way.

While the pointz = 0 is a singularity oflog z in the finite z-plane, the point
infinity is also a branch point dbg z. To see this, we put

1
z=—.
w

Then the pointv = 0 corresponds to the poiat= co. Since
logz = — logw,

the functionlog z has a branch point ai = 0, or z = co. We also realize that a
branch cut otog z, chosen in any way we just described, is always a curve joining
the only two branch points of the function.
It is straightforward to find the branch points for the functlog(z — z). Let
w = z — zp, then
log(z — 2zp) = logw.
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Sincew = 0 andw = oo are the branch points of the functitsgw, z = 2
andz = oo are the branch points dbg(z — zp).

® Problem for the Reader

Find the branch points dég(z? — 1). Draw some possible sets of branch cuts.

€ Solution

We have
log(2% — 1) = log(z — 1) +log(z + 1).

Thus the points-1, 1, andoo are the branch points of the functibsg(z? — 1).

We shall draw branch cuts to ensure the function is single-valued in the cut
plane. Some possible sets of branch cuts for the fundtigfr®> — 1) are drawn
below.

Figure 2.10

® Problem for the Reader

Find the branch points of the function

o zZ—1
& z4+i)

Draw two sets of branch cuts for this function.
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€& Solution
Since

z—1 . .
log <z n z> = log(z — i) — log(z + 1),

the branch points of the function in the finite plane ased —i.

We draw two possible sets of branch cuts in the figure below. While the set of
branch cuts in the right-hand figure is self-explanatory, we shall say a few words
about the left-hand figure. Let us traverse in the counterclockwise sense a closed
path enclosing both branch points. Since this closed path encloses the, paent
have, as we return to the starting point,

Figure 2.11

log(z — i) — log(z — i) + 2mi.
And since this closed path also encloses the peintve have
log(z + 1) — log(z + 1) + 2mi.

Since

o zZ—1
& z+1
is equal to the difference dbg(z — i) andlog(z + 7), its value does not change as

the closed path is traversed. Therefore, it suffices to draw just one finite branch cut
between and—i to make the function
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1 zZ—1

(o)

& z+1

single-valued in the cut plane. This is because there is no closed path in this cut
plane, which encloses just one of the branch points.

Note that this branch cut is a finite branch cut. That this is possible means that
infinity is not a branch point. This is easily verified directly. Let w=!; then

1 zZ—1\ 1 1—w

©8 (z—i—i) o8 <1+iw) ’

We see from the right side of the equation above that 0 is not a branch point
of the function.

Since infinity is not a branch point, it is not necessary to draw a branch cut
joining infinity with a finite point. We may therefore think of the two branch cuts
in the right-hand figure above as joining with each other at infinity, forming just
one continuous branch cut. We may draw this branch cut by starting-froand
moving downward along the negative imaginary axis, passing through infinity and

following the positive imaginary axis to the poihtThis is somewhat like the way
Columbus tried to get to India.

Next we discuss the function

wherea is a complex number. As we traverse a closed path enclosing the origin
once in the counterclockwise sense, we have

20 6227“12&.

Since the value of® changes after such a trip, the origin is a branch point®of
Let z = w™!. Then we have® = w~%, and we conclude that the poiat= oo

is also a branch point of*. Indeed, the point§ andoco are the only two branch
points of the functione®. Thus this function is singled-valued in the plane with a
cut joining the origin with infinity.

We call attention to the fact f = n, wheren is an integer of either sign, then
e?m js equal tae??™  which is unity. Thus the value af* does not change after a
closed path enclosing the origin is traversed. Therefore,0 andz = co are not
branch points for the functiogf*, wheren is either a positive integer or a negative
integer.
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Next we consider the case wheiis equal to the rational numbes/n, where
m andn are integers having no common factoFie value of the function”/"
changes by a multiple @f2™™/™ after a path enclosing the origin is traversed once
in the counterclockwise sense. Thus the origin is a branch point of the function
2™/™_But after we go around the origin in the counterclockwise sertimes, the
function changes by a multiple ef>™™, which is equal to unity. This says that the
functionz™/" has onlyn Riemann sheets.

® Problem for the Reader
Find the branch points of the functiefi(1 — 2)°.

€ Solution

If neithera norb is an integer, the function has branch points at 0 andz = 1
in the finite plane
Letz = w!: then

221 —2) = w0 (w - 1)

The function has a branch point @t = 0 unless(a + b) is an integer. Thus
2%(1 — z)" has a branch point at= oo unless(a + b) is an integer.

As an example, consider the function— i)~'/2(1 — 2)3/2. The pointsi and
1 are the branch points of this function, but infinity is not. Therefore, this function
is single-valued in the plane with a finite branch cut connectitog .

We give a few pointers below to help the reader find the branch points of a
function.

a. If zo is a branch point of (z), it is also a branch point dbg f(z). This is
because as the value $fz) changes, so does the valudaf f(z).

Similarly, a branch point off(z) is a possible branch point df (z)]*. We
qualify with the word “possible,” as there are exceptions. An exampjé i$ =
vz anda = 2. In this case, the origin is a branch point fffz), but not that of
O

b. If 2y is a zero off(z), it is a branch point ofog f(z). It is also a possible
zero of[f(2)]*. To prove this, let, be ann'"-order zero off(2), i.e.,
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f(z) = (2 — 20)"F(=),
whereF(z) is analytic atzo andF'(z9) # 0. Then
log f(2) = log F'(2) + nlog(z — 2p).
We see from the formula above thgtis a branch point ofog f(z). Also, we have

[f(2)]* = (2 — 20)"* [F'(2)]* .

From the formula above, we see thgtis a branch point off(z)]* unlessna is an
integer.

c. If 2z is a pole off(z), it is a branch point ofog f(z). It is also a possible
branch point of f(2)]*. To prove this, let, be ann'*-order pole off (z), i.e.,

F(z)

(2 —29)"’

fz) =
whereF(z) is analytic atzo andF'(z9) # 0. Thus

log f(z) =log F(z) — nlog(z — zp).

We see from the formula above thgtis a branch point ofog f(2).
Also, we have

[f(2)]* = (2 = 20) " [F'(2)]*

From the formula above, we see thgtis a branch point off(2)]* unlessna is an
integer.

Therefore, to locate the branch pointsleg f(z) or [f(z)]*, we look for the
zeroes, the poles, and the branch pointg(af).

® Problem for the Reader

Find the branch points fol — (1 — 22)1/2] 1/3
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€& Solution

Let f(z) = 1 — (1 — 2?)Y/2. Sincez = =1 are the branch points of(z), by
point (a) they are also branch points of the funclﬁﬁhz)]l/?’. To find the zeroes of
1 — (1 — 2%)1/2, or the roots of the equation

1= (1-23)Y2
we square the equation above and get
z=0.

But squaring an equation may produce roots that are not the roots of the equation.
So let us see if = 0 satisfiesy/1 — 22 = 1. We have

VI = 22)|s = £1.

Thus the equation is not satisfied unless we choose the valyd ef 22|,_ to
be 1. To say this in another way, whether= 0 is a branch point for the function
[f(z)]1/3 depends on the branch we choose for the functidn- 22. And if we
choose the branch so that the functigh — 22 at z = 0 is unity, then forz very
small, we have

V1—22~1-2%/2,

Thus
[F()]Y? o 223213,

andz = 0 is a cubic-root branch point of the function.

To see whether infinity is a branch point figfi(z)]'/3
we get

, we setz = w1, and

PP = [w-var—1] P

Thereforez = oo is a cubic-root branch point for the functi¢h — (1 — 22)1/2] 13

In summary, the branch points of the function in thelane aret1, co. In
addition, the origin is a branch point of the function provided that we choose the
branch in whichy/'1 — 22 is equal to unity at = 0.
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® Problem for the Reader

Find the branch points of the functideg (z +V1- z2> .

€ Solution

Let f(2) = (z +v1-— z2> . Since the pointst1 are the branch points of(z),

they are the branch points of the functilog f(z).
Next, the zeroes of (z) are given by

V1—22=—z

There is no root for this equation.
Letz = w™!, and we get

N
log (z+ 1—z2> = log (M)
w

We see from the formula above that= 0 or z = oo is a logarithmic branch point
of the function.
To summarize, the branch points for the function intkhg@lane aret1 andoo.

We'll give an example to illustrate how to use the concept of branch cuts to
calculate a real integral.

Example:

Evaluate the integral
o0
1
I— / oz
0 4 + $2
with contour integration.

The first thing to do is to relate this integral with another integral the contour
of integration of which is a closed contour. We apply Cauchy’s residue theorem to
evaluate the latter, and obtain the value of the former after the value of the latter is
found.

We draw a branch cut joining the origin teico, and choosé, the argument
of z, to be zero on the positive real axis. The functiegz on this Riemann sheet
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is then uniquely defined. In particuldng z is equal toln x on the positive real
axis. Therefore, we may expressaslog z/(4 + z?) integrated over the positive
real axis. This contour of is not closed.

Let us define another integral

o0
J = / loidz.
oo 4+ 22
The contour of/ can be closed upstairs, as the contribution of the infinite semicir-
cle in the upper half-plane is of the order of the limit(@t1n R)/R? asR — oo,
where the factoin R in the numerator of this quantity comes from the numerator
of the integrand, the factd®? in the denominator of this quantity comes from the
denominator of the integrand, and the fadkbin the numerator of this quantity is
the order of magnitude of the length of the arc. This quantity is equal to zero in the
limit R — oo.
The only singularity enclosed by this closed contour is at 2i. Note that,
starting at the poirit, we may reach the poigi by traversing the counterclockwise

circular arc of radiug with angular widthr /2. Thus the argument dfi is 7 /2,
and we have

2i = 2¢'/2,
As a result,
J_ 2Wilog(2?iﬂ/2) _ 7T1112 + i7r/2.
43 2

To obtainl from J, we express/ as

J=J1+ Js,
where
> logz
= —=d
1 /0 4+ 2270
and

O logz
— [ 8% 4.
& /oo4+z2 ?

First of all, J; is simply I. Next we shall show thal, is related tal as well. We
have, on the negative real axis,

log z = log(re'™) = Inr + in.
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Thus
Xir+Inr im?
= - dr=—+1.
J2 /0 iy Tt
Therefore,
o2
17T
=21 + —.
J + 1
With the value ofJ obtained earlier with the help of the Cauchy residue theorem,
we get
I= / ln—ﬂdx e (2.52)
0 4 +x 4

We close this section with two topics: (a) a discussion of the principal value of
an integral, and (b) a discussion of the Plemelj formulae.

Back in the high school days when we were first introduced to integrations over
a real variable, some of us might have puzzled over the value of real integrals such

as
/3 dz
_2 T ’
For, if we carry out the integration in a straightforward way, we get

3
d
/ Iz 35=1n3 —In(-2).

2 X

But what is the value dn(—2)?
This ambiguity is due to a difficulty with this integral. The fact is that the
integrand% has a simple pole at the origin. Since the contour of integration passes

through the origin, the integral
/3 dz
_2 T
is actually undefined as it is.
Let us try to define this integral by identifying it with

/61 dz 3 dx
- _'_ —,
-2 xr € xr
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wheree; ande, are positive and infinitesimally small constants. This means that
we first integrate fromx = —2 to the point—e;, which is to the left of the origin,
jump over the origin, and continue to integrate from the peintwhich is to the
right of the origin, to the point = 3. In this way we make sure that the contour of
integration does not pass through the origin. We define

/3 dz
_2 T
to be this integral in the limi¢; ande; go to zero.
There is something encouraging about this defintion of the divergent integral

3 dx
L.
For, while both integrals are infinite as and e, go to zero, the first integral is
negative and the second integral is positive. Indeed, the integrands of both integrals
are the same functioty z, which is an odd function of. Thus there is cancellation
between these two integrals, and we hope that the sum of them is firiteaasl

€2 9o to zero.
To see if this true, we calculate these integrals explicitly. We have

/“d_w_ fdr_p @
= _n2,

2 X

and
3 dx 3

=In—.

€ T €9

Thus the sum of the two integrals above is

In 36
262 '
This value depends on the ratio

€1

€2

and is not unique.
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Let us define the principal value of the divergent integral

.5
_2 I

to be the one with; = ¢ :

P/3d_x:/€d_x+ 3d_x
oz o e

with e infinitesimal. We then have

3
P/ dr _ In3/2,

2 X

which is unique.

For some integrals, the singularity of the integrand may be locateglratther
than at the origin. Lef(x) blow up like a simple pole at(, an interior point of
the interval of integration. We define the principal value of the divergent integral
f; f(x)dz to be

b

P/abf(m)da::/jOGf(m)da:+ F(x)dz,

To+e€

wheree is positive and infinitesimal.

We mention that not all divergent integrals can be made finite and unique as
we take their principal values. For example, the principal value of the divergent

integral
/2 dx
—1 fL’2

remains divergent, als/z? is positive at the two sides of the origin and there is no
cancellation between the integral over positive values ahd that over negative
values ofz. On the other hand, the principal value of a convergent integral such as

2 .
Sin xr
dx
—1 Xz

is equal to the integral itself. This is becauseitbimg an infinitesimally small
interval of integration does not change the value of a convergent integral.
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We also mention that there are other ways to define divergent integrals such as

/2 dz
2 T '
As an example, the contour of this integral may be chosen to be the half-circle of
radius 2 which has the origin as its center and lies in the upper half-plane. We
may also make other choices of the contour of integration, but as long as the curve

does not pass through the origin, the integral is defined. We may then carry out the
integration explicitly and get
/2 dz 2
— =In—.
_92 -2

The value of the integral depends on the difference of the phase of the upper end-
pointz = 2 and that of the lower endpoiat= —2 as the contour is traversed. Let

us choose this contour to lie entirely in the upper half-plane, the endpoints being

excluded. While there are many such contours, by Cauchy’s integral theorem the
value of the integral is independent of these contours we choose. Now as we go
from —2 to 2 on such a contour, we go clockwise and the phase of the poeing

is smaller than that of the poiat= —2 by «. Thus we have, if the entire contour

of integration lies above the origin,

/2 dz < 2 > ,
—=In(— ) =—ir.
_92 R -2

By choosing the contour to be the one that is infinitesimally above the real axis, we
may express this result as

2 2
d d
/ ﬁ, —P/ —$:—i7r,
_o T+ 1€ 9 T

the second integral above being zero as its integrand is an odd function of

® Problem for the Reader

If we define the contour for the integral

/3 dz

_92

to be a curve joining-2 to 3 and lying entirely in the lower half-plane, the end
points being excluded, find the value of this integral.
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If we follow such a curve from-2 to 3, we go counterclockwise, and the phase
of the pointz = 3 is larger than that of the point= —2 by =. Thus for all such
contours, we have

/3 d _ In(3/2) + i,

2 %

which differs from the principal value of this integral lby.
By choosing the contour to be infinitesimally below the real axis, we may ex-

press this result as
3 3
d d
/ x, — P/ @ _ I,
_o X — 1€ 9 X

We are now ready to prove the Plemelj formulae, which say that

/ab L))da: = P/ab r/(ml) dx £+ imr(z)

' — (x +ie ' —x

wherea < z < b. We assume that the functiefz’) is such that the integral above
is convergent. This does not exclude the possibility-fiar’) to be infinite at some
point inside the interval of integration. It just means that’) must not blow up
too badly at any such points for the integral to diverge. For example, it must not
blow up as fast as a simple pole at the endpairdaadb.

We also point out that considered as a functiom¢fthe integrand above has
a pole atr & ie. Since the contour of integration is on the real axis, and sinse
infinitesimal, the plus and minus signs in frontein the integral merely signify
whether the pole is above or below the contour of integration.

We write

b ! b AN b
[t g [y [,
o T —x— e o X—x—1€ o T —x—1e

Note that the factor(z) in the last integral above , being independent bf
may be placed at the left of the integral sign. We also note that the integrand of the
first integral on the right side of the equation above is finite in the limi gses
to zero. This is because the numerator of the integrand vanishés-at. Thus
we may ignore the termie in the denominator of this integral. Since the principal
value of such an integral is equal to the integral itself, we have
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/b T(I,) P/ P/ /_P/b T(I) dxl
a -z x —x—ie -z o T —x

Again, r(x) in the last integral above may be taken to the left of the integral
sign. Generalizing slightly what we have discussed, it is possible to prove that

b
[ r )35
o X —x—1€ ' —x

With all these considerations, the first of the Plemelj formulae is obtained.

The second Plemelj formula is obtained from the first Plemelj formula by tak-
ing complex conjugation.

We mention that if we replace, in the integral of the Plemelj formula, the real
variablex by the complex variable, we get the function

o) = [ gucipn

r —Zz

which is analytic provided thatis not a point on the intervéd, b]. This is because
the values oft’, the variable of integration, are restricted to the real values between
a andb. Therefore, the denominatés’ — z) never vanishes as long ass not
equal to some real value betweemandb. The factorl/(z’ — z) in the integrand
is thus an analytic function of provided that is not a point in the intervak, b]
and hence so i§(z).

The functionf(z) is discontinuous across the inter{@lb], as we shall presently
see.

® Problem for the Reader

Find the values off (z + i¢) and f(x — ie) whena < z < b. Find also the
discontinuity off(z) across the branch cut< x < b.

€& Solution

By the first of the Plemelj formulae, we have

b
f(x +ie) = P/ da’ + imr(x).

o T -1
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By the second Plemelj formula, we have

b T(l‘/)

flx —ie) = P/ . xda:’ —imr(x).

Therefore,
f(z +ie) — f(x —ie) = 2inr(zx)

is the discontinuity off (z) across the branch cut< z < b.

Thus the functionf(z) defined by the integral above has a branch cut from
to b, and is analytic everywhere eld#fe also note that, since/(z’ — z) vanishes
asz goes to infinity,f(z) vanishes as goes to infinity.

The converse is also true: ff(z) is analytic in the complex plane with the
exception of a branch cut from to b on the real axis, does not blow up as fast
as a pole either at or atb, and vanishes at infinity, thefi(z) is given by the
integral above, witRzir(z) the discontinuity off (z) across the branch cut. (See
homework problem 15.)

This means that we can construct the functfdn) by merely knowing its dis-
continuity across the branch cut, provided that all the conditions mentioned above
are satisified.

These results are easily generalized to the case in which the branch cut is not a
straight line on the real axis but a curve in the complex plane.

F. Fourier Integrals and Fourier Series

In this section we shall discuss the Fourier integral and the Fourier series, which
are necessary tools for solving many physical problems. We shall encounter some
of these problems in Chapters 4 and 5.

Let F'(x) be a function defined for all values offrom —oo to co. We define
the Fourier transform of'(z) as

Fk) = / e () da (2.53)

—0o0

The Fourier transforn”(k) is uniquely determined ondg(z) is given, provided
that the integral above is convergent.
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The Fourier integral theorem says that the converse is also true, thak'¢he
is given, one is able to determid&x) from F'(k). Indeed, the inversion formula
of Fourier transform is

F(z) = /00 e’kwﬁ’(k)g—k (—o0 <z < 00), (2.54)

o s

which has a striking resemblance to (2.53).

With some partial differential equations, it is easier to fifigk) than to find
F(x). One of the best ways to solve such equations is to fi(&) first and then
use Fourier’s inversion theorem to determifier).

To prove Fourier’s inversion formula, we define

A
I(z) = / it f (1) 9K (2.55)

Y 21

Then (2.54) is exactly
F(z) = lim Iy(z).

A—00

We substitute (2.53) into (2.55) and get
A e dk T
I\(z) = /}\ e’k“% [/oo e R B (x)dx'| .

In the double integral above, we are supposed to integratead\iest before we
integrate over:. We shall reverse the order of the integration, integrating éver
before integrating over’. There are conditions of'(x) under which this change
of the order of integration is justified, but we will not elaborate on it here.

It is easy to carry out the integration oveand get

A i -
/ pika—a) dk _ sin Az’ — 2)] (2.56)

A 27 m(z' — x)

ThusIy(x) is given by

I(z) = / M = D) e gy, 2.57)

oo T(T =)

For the sake of getting the point across quickly, we shall first give a heuristic proof
of the Fourier integral theorem without regard to rigor. We put

(2 — )\ = X; (2.58)
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then (2.57) becomes

* gin X X
I\(z) = /oo — F (m + T) dX. (2.59)
Since
. X
lim F (m + —) = F(x), (2.60)
A—00 A
we have
lim I(z) = F(z) / S X = Fa), (2.61)
A—00 — oo X

where we have made use of (2.38). This is the Fourier integral theorem (2.54).

As | have warned the reader, there is a lack of mathematical rigor with the
arguments given above. This is because (2.61) is obtained after we réfjlace
X/A)in (2.59) withF'(z). Such areplacement is valid onlyXf/ A can be regarded
as very small wher\ is very large. ButX, the integration variable of (2.59),
ranges from—oo to oo, and can surely be larger than A rigorous proof must
therefore include the argument that )ais very large, the region of integration that
contributes to the integral (2.59) is restricted to

1X| < A,

or, by (2.58),
|z' — x| < 1.

To prove this, we return to the integral in (2.57). The integration variable of this
integral isz’. At 2’ = z, we have, by I'Hopital’s rule,

lim ———+— =
e m(z' — x)

sin[AMz' —z)] A
o

Therefore, the integrand of (2.57) at = z is equal toAF(z)/x, a very large
number when\ is very large. Itis clear that the integrand of (2.57) continues to be
of the order of\ F'(z) in a sufficiently small interval around the poirit= z. To be
specific, if(z' —x) is as small ag /\, then(z’ —x) ! is as large as. Furthermore,
since(z’ — z) is small,F(z') is approximately¥'(x). Thus the integrand of (2.57)
is of the order of\F'(z) in the small interval in whicliz’—z) is of the order ofl /\.
The value of the integral over this small interval is of the order of the magnitude of
the integrand times the width of the interval, or
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AF(2)]- (1/) = F(a).

This order of magnitude estimate is in agreement with (2.61).

But, as we have mentioned, we need to prove that we may replace by
F(z) for the entire integral of (2.57). The problem is that whéis considerably
different from x, the integrand of (2.57) does not vanish)as—+ oo. For such
values ofz/, it is not justified to replacé’(z’) by F'(z).

We note that when is very large, the factasin [A(z’ — z)] in the integrand is
a rapidly oscillatory function of’. As we shall discuss in more detail in Chapter 9,
integrating a rapidly oscillatory function over an interval gives a very small number.
For example,

sin A

1
\x')dz' =
/Ocos(q:)z N

which vanishes as goes to infinity. Therefore, with the exception of the small
interval around:’ = = we just discussed, the contributions to the integral of (2.57)
from any other region are very small. And as— oo, the contributions from
any region other than an infinitesimal interval arourid= = vanish. Thus, in the
limit A — oo, the contributions to the integral (2.57) come exclusively from an
infinitesimal neighborhood of the point = . For this reason, we may replace
F(z') in the integrand of (2.57) by'(x) and get

 sin [A (2" — )]

o (@' —2)

lim I\(z) = F(z) lim dz’.
A—00

A—oo J_
By (2.38), we get precisely (2.61), and the inversion formula for Fourier transform
has been proven.
As a side remark,

lim sin [A(z’ — z)]
Aooo  m(x! —x)

§(z' — ) (2.62)
is known to be the Dirac delta function. The Dirac delta function is very useful

with many problems in science and engineering, and | shall say a few words about
its properties here. First of all, by (2.38) we have

/ 5(z' — z)dx’ = 1.
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Furthermore, since there is no contribution from any region outside an infinites-
imal neighborhood of’ = z, we have, for any functiop(z'),

/ 3(a’ — x)g(a’)da’ = g(x) / §(a’ — x)da’ = g(x).
In particular,
/ §(x)e k' da! =1,

which says that the Fourier transformdgfc) is unity. By the inversion formula of

Fourier transform, we find
< . dk
5@y:/ etke (2.63)

a0
—oo 2w

which is the integral representation for the Dirac delta function. (The Dirac delta
function will be discussed more fully in Chapter 4.)

® Problem for the Reader

Find the Fourier transform of'(z) —00 < T < 00.

T 442
€& Solution
We have
N 0o efikx
F(k) = / 5dz.
btz
If £ > 0, we close the contour downstairs and get
~ o2k o2k
F(k) = —2mi =
(k) = —2mi—p; 2

If £ < 0, we close the contour upstairs and get

. o2k 2k

B(k) =2mis— =
(k) = 2mi 2
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Thus "
- 7[.672k
F(k) =
(k) = —5

In the proof of the Fourier integral theorem, we have implicitly assumediha}
is continuous. Consider now the case wié&x) is discontinuous at,. We shall
denoteF (z] ) as the value of"(z) asz approaches, from the right, andF'(z )
as the value of’(x) asx approaches, from the left. We write (2.59) as

0 ginX X ® sin X X
I)\(IO):/OO X F<I0+X> dX-l—/O X F<I0+7> dX. (2.64)

In the limit A — oo, F(zo + %) approaches(z,) if X is negative, and ap-
proaches”(z ) if X is positive. Therefore, we have

F(zg) + F(xf)

AILIgo In(zg) = 5 )
which is, explicitly,
0o _ — +
oo T

This says that the Fourier integral of a functibi(z) is equal to the mean of the
two values ofF'(x) atzg, at which F'(x) is discontinuous.

® Problem for the Reader
Let

Fz)=¢e", >0,
=0, x<0.

This function is continuous at = 0. Find F(k:) and verify if (2.65) is valid.

€& Solution

It is easy to find that

- o 1
F(k) = / e FTe T dy = —.
0 1 + 'Lk;
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Verifying (2.65) is less trivial. The left side of (2.65) witly = 0 is
/°° dk 1
Coo 2w 1+ ik’
which is divergent.

We note that by (2.55), the lower limit and the upper limit of the Fourier in-
version integral are-A and A, respectively, with the limit\ — oo taken after
the integration has been carried out. Thus the divergent integral above should be
regarded as

i /A% L /A% L1
roo ) y2m1+ik  abeo) \am \1+ik ' 1—ik

oy /Adk 11
Tobe) s 2mit k2

a finite result which agrees with the right side of (2.65).
Next we write, in (2.53),

e % — coskx — isinkx.

Then (2.53) becomes
F(k) = A(k) —iB(k),
where

A(k) = /oo cos kxF(x)dz, B(k) = /oo sinkxF(x)dx. (2.66)

—0o0 —0o0

We find from (2.66) that

ReplacingF (k) in the inversion formula (2.54) byt (k) —iB(k), we get, after
making use of the facts that(k) is an even functon ok and B(k) is an odd
function ofk,

F(z) = /oo [A(k) cos kz + B(k) sin kx| % (2.67)

If F(x) is an even function of, (2.66) shows thaB(k) = 0. In this case F(x)
has the integral representation
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F(x) = /00 A(k) cos kx% (2.68)

If F(z) is an odd function of, (2.66) shows tha#i(k) = 0. Therefore F'(z) has
the integral representation

o dk
F(x) = / B(k)sinkz—. (2.69)
oo 27
We shall next derive the Fourier integral representations of a funéiar),
which is given only in the semi-infinite regidn< x < co.
We may, as a mathematical artifact, define the functi¢m) for « negative by

The function F'(z) is now defined for all values af, and is an even function

of . As we have shown, an even function ofhas the Fourier cosine integral
representation. Thus a function originally defined only in the semi-infinite region
0 < xz < oo has a Fourier cosine integral representation given by (2.68). By (2.66)
and the fact that'(z) is even, we may express the coefficiet{) as

A(k) =2 /000 cos kxF(x)dzx. (2.70)

In this expression foA(k), the region of integration is the positixeaxis, on which
the value off’(x) is originally given.
Alternately, we may also defing(z) for negative values aof by

The function is now defined for all values #fand is an odd function af. An odd
function of x has the Fourier sine integral representation. Thus a funétian
given only forz > 0 has the Fourier sine integral representation (2.69), where

B(k) =2 /000 sin ka F(x)dz. (2.71)

Note that the Fourier sine integral (2.69) vanishes as we set0. If F(0™)
is not zero, the Fourier sine integralat= 0 is not equal toF'(0™). Instead, the
Fourier sine integral at = 0 is equal to half of’(0%) + F(07), which is zero as
F(x) is by construction an odd function of
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Next we turn to representations of functions given in a finite region. As we will
see, such a function is represented by an infinite sum, not an integraf(@ebe
a function given in the interval-r, 7], and let

1 K

ap = —
2 J_,

e~ £(0)d6. (2.72)
The coefficienta,,, known as the Fourier coefficient ¢f(#), is determined once
f(0) is given We shall prove that

FO) =) ane™. (2.73)

The series in (2.73) is known as the Fourier serieg(@. It shows that the
function f(0) is determined once the Fourier coefficientis given.

Sincee™™is a periodic function of with the period, so is the Fourier series
in (2.73). Therefore, if only implicitly so, the functiofi(#) outside the interval
[—m, 7] is assumed to be a periodic functionto$atisfying

f(0+2m) = f(6). (2.74)

Before we prove the inversion formula (2.73), we first say a few words about why
such a formula is expected. We multiply (2.73) by™ /(27) and integrate the
equation from—= to 7. We get

1 27 - 1 27 - S -

— M7 f(0)dO = — e ne’de. 2.75

or ), ¢ HOd =7 | e néiio” e (2.75)

The integrand on the right side of (2.75) is an infinite series, and there are condi-
tions under which it is justified to carry out the integration term by term. We shall

assume such conditions are satisfied. Since
1 e"im=n)0gy — 1, (m =n),
2 J_,

=0, (m # n), (2.76)

the only term on the right side of (2.75) that does not vanish after the integration
has been performed is the term with= n. Thus the right side of (2.75) is equal

to a,, and we get (2.72). We have therefore shown that, if the fungt{@n given

in the region—7 < 6 < 7 has a Fourier series expansion, its Fourier coefficient
must be the one given by (2.72).
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The Fourier coefficient,, of f(#) can be compared with the componeht of
a vectorv in space:
U = Aret + Ares + Ases, (2.77)

whereéeq, &, ande; are the unit vectors in the directions of they,andz axes,
respectively. Since the unit vectogs, e3, ande; are mutually orthogonal, the
scalar product between them is given by

6Tn> : 6_n> = 1, m=n,
=0, m #n. (2.78)
From (2.77) and (2.78) we have
A, =¢ . (2.79)

We note that (2.77) is the analogue of (2.73), védithe counterpart o6 Also,

(2.78) is the analogue of (2.76), and (2.79) is the analogue of (2.72). Note also that
it is not possible to represent a vecfor in the three-dimensional space by only
two of its components, sa§; andA,, for

U # Ajel + Ayes.

Rather, we need all three of the basis vecidrses, andes to represent a three-
dimensional vectof/. Such a set of basis vectors is said to be a complete set of
basis vectors in the three-dimensional space. Returning to the issue of the Fourier
series, (2.73) says that the set of functief®, n = 0, +1,+2, - - - is complete. In
other words, it is possible to use this set of functions to represent a funfion
in the form (2.73) for—7n < 6 < 7.

To prove (2.73), we define

N
Sn(0) = Y ane™. (2.80)
n=—N
The remaining task is to show that

F(6) = Lim Sn(6).

N—oo

Substituting (2.72) into (2.80), we get

N
1 T /
Sn(0)= > o / 0= £ (0")de'. (2.81)
n=—N -
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Next we carry out the summation ovelin (2.81). Since

N 1 — W2N+1
Z Wwr=wNltwt M) =N —
1—w
n=—N
wN N1
- 1—w ’

we have, by multiplying both the numerator and the denominator of the expression
above byw—1/2,
—(N+1/2) _ ,N+1/2

N w
Z W' = 12, 1/2
J— w — W

Identifying e’ with w, we get

N —i(N+1/2)0 _ _i(N+1/2)0 :
Z pind _ € — 6'9 _ s1n(N+ 1/2)9' (2.82)
B e—0/2 _ ¢i0/2 sin(6/2)
Thus (2.81) is
1 [Tsin[(N+1/2)(0" = 0)] , 1 o
Sn(0) = o /7r S (@ —0)/2] f(6)de'. (2.83)

We shall conside§,, whenN is very large. At a poing’ # 6, the integrand above

is a rapidly varying function of’. And at#’ = 6, the integrand is as large as
(2N + 1) f(9). As we have just explained, this means that the contributions to the
integral come from a small neighborhood@®f= 6. We may therefore make the
approximatiorsin [(6' — 0) /2] ~ (¢’ — 6)/2, and (2.83) becomes

Sn(6) ~ % / " sinf(V ?;),11 Qg)(el — ¢ 0\ae (2.84)

By (2.62) and (2.84), we get

lim S,(0) = f(0), (2.85)
N—oo
which is (2.73).

In the argument above, we have implicitly assumed &) is continuous.
Let £() be discontinuous a, with f(67) the value off () asé approaches,
from the right, andf (6, ) the value off(6) asé approache8, from the left. It is
then straightforward to prove that

[£(6) + £(65)] - (2.86)

N =

lim Sy =
N—oo
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Thus at a point of discontinuity, the Fourier series of a function is equal to the
mean of the left and right limiting values of the function.

® Problem for the Reader

Find the Fourier coefficient,, for the function

fO)=1,(0<0<m)
=—1,(-7 <0 <0). (2.87)

What are the values of the seriegat 0, 7/2, and7? Can you explain why the
series takes such values at these points?

€& Solution

We have

1 0 1 [ . 1—(—=1)"
an=—— [ e ™dp+ — / e M0dn = 1=
2 J_, 2 Jo

or

ap = i,, (nodd)

or

4 [sm& sin 30 +] . (2.88)

T T3
At the pointd = =w/2, f(0) is continuous. Therefore, the value of the Fourier
series at) = 7/2 is equal to the value of (#) at® = = /2. This gives us the

identity
4 1 1
11—+ Z ... =1.
7T|: 3 5 ]

™
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The Fourier series (2.88) vanishedat 0. To understand why, we note that the
function f () is discontinuous & = 0, with

f07)=-1,f(0") =1.

By (2.86), the Fourier series ¢f#) must vanish a# = 0. The Fourier series (2.88)
also vanishes @ = . To understand why, we note thAt9) is equal to unity for
0 < 6 < mw. Thus we have

f(r7)=1.

The valuef(7) is not explicitly given. But the functiorf(6) is regarded as peri-
odic with the perio®~. By (2.74), we have

f(0) =—-1,(m <0 <2m),

and hence
f(r™) = —1.
By (2.86), the Fourier series ¢f#) must vanish afl = .

Next we derive another series known as the complete Fourier series for a func-
tion f(0). We substitute

inf

e = cosnf + isinnf
into (2.73) and get
F(0) =ao+ Y [Ancosnd + By sinnf] , (2.89)
n=1
where
A, =an+ a_p, B, =i(a, —a_y),(n>0). (2.90)

Equation (2.89) is the complete Fourier series f¢f). From (2.72) and (2.90),
we have

1 (" 1 ("
Ap == £(0)cosnbdd, B, == [ f(6)sinndde. (2.91)
—r ™) _x

s
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If £(0) is an even function of, we find from (2.91) that
B, = 07

and the complete Fourier series (2.89) is reduced to

f(0) =ap+ i A, cosnb, (2.92)

n=1

which is called a Fourier cosine series. The coefficiehtsandag are given by

2 T
A, = ;/0 £(0) cosnddo, (2.93)
and -
ap = ;/ f(0)de, (2.94)
0

which are integrals over positive valuestobnly.
Similarly, if the functionf (0) is an odd function o), we have from (2.72) and
(2.91) that
ag = An =0.

Therefore, the complete Fourier series (2.89) is reduced to the Fourier sine series

f(6) = Bysinn, (2.95)
n=1
where .
B, == / £(6) sinnfdo. (2.96)
™ Jo

An example of an odd function &fis the function of (2.87). As we have found,
the series (2.88) for this function is indeed a Fourier sine series.

If a function f(#) is given only in the interval < 6 < 7, we may, as a
mathematical artifact, define this function #hnegative to be

f(=0) = —1(0).

In this way, we have given meaning to the functj¢{@) in the region-= < 6 < 0;

the function so defined is an odd functiontfAs we have seen, an odd function

can be represented by the Fourier sine series (2.95). This means that a function
f(0) given for0 < 6 < 7 can be represented by the Fourier sine series (2.95) with
the coefficientB,, given by (2.96).
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We may also extend the domain of a functipf®) given for0 < 6 < = by

choosing it to satisfy
f(=0) = f(0).

The function f(#) is then an even function of with the domain extended to
[—m, 7| . This function can be represented by the Fourier cosine series (2.92) with
the coefficients4,, andag given by (2.93) and (2.94).

We may also extend the results above to a functian efhich has the domain
of [-L, L], whereL does not have to be equalto We define

0= —x; (2.97)

then the domain of is [, ] . By replacingd in (2.73) with7z/ L, we find that

F(z) = Z ane™™/E (—L <z < L). (2.98)

Making the same replacement in (2.72), we find that

L
= L7 e/l g da (2.99)
oL |,

an

If the domain of a functiorF'(x) is0 < = < L, we may express this function as a
Fourier cosine series

F(z)=ap+ i Ay cos(nmx /L), (0 < z < L). (2.100)

n=1

The coefficients in the series above are given by

L
ag = l/ F(x)dz (2.101)
L Jo
and
2 L
A, = Z/ F(x)cos(nmx/L)dx. (2.102)
0
This function can also be expressed by the Fourier sine series
F(z) = Bpsin(nrz/L), (0 <z < L) (2.103)
n=1

where .
B, = —/ F(x)sin(nz/L)dx. (2.104)
0
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We close this section with two remarks:

a. Let us compare the Fourier serlg¥° __ a,e™ with the Maclaurin series,
with which the readers are perhaps more famlllar The convergence of the Maclau-
rin series depends on the magnitude:ofSpecifically, the series converges faster
if the magnitude ot is smaller. The situation is different for a Fourier series. This
is because the magnitude &7 is unity for all real values of. Therefore, there
is no a priori reason why a Fourier series should always converge fastee=fdr
than ford = n/2, say. As a matter of fact, if we put = ¢*, the Fourier series
(2.73) become$ "2 a,z", which is a Laurent series. Since the magnitude of
z = €' is equal to unity for aII real values df there is no a priori reason why the
convergence of the series favors any particular value of

In Chapters 4 and 5, we shall show how to express a solution of a partial differ-
ential equation by a Fourier series. We shall find that each term of the series repre-
sents a mode of the solution of the equation. The sum over the first few modes often
approximates the solution equally well for all values of the independent variable.

b. Next we discuss an interesting phenomenon of the Fourier series known as
the Gibbs phenomenon. As we knatiy (6) of (2.80) is the sum of a finite number
of terms each of which is eontinuous @inction ofd. ThusSy () is a continuous
function of@. Let f(#) be discontinuous &,. WhenN is very large, we expect
Sn to approximatef (6) very well. But how does the continuous functiSi ()
approximate the discontinuous functig(p) in the neighborhood ofy?

To be more specific, take the example of the function defined in (2.87). When
N is large, we expext that (6) is approximatelyl when0 < 6 < =, and is
approximately—1 when—= < 6 < 0. How does this continuous functicsiy(9)
transit from roughly-1 to roughlyl within a very short interval of around = 0?

One may expect that the functidi; (#) increases monotonically from approx-
imately —1 to approximatelyl over a small neighborhood of the origin. But as it
turns out, this is not exactly the case.

If £(0) is the function of (2.87), we have from (2.84) that

Sn(0) ~ —%/ sin [(IV @1/29))(9/ 9)]d9/
1 sin[(N +1/2)(0' —0)] .,
" ;/0 CE R
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Let
(N +1/2)(¢ —0) =t;

then
~(N+1/2)0 (N+1/2)(7—0) o
swo)~ 1 [ v [ MY g,
T J(N+1/2)(nt0) T T Jo(N+1/2)0 t

In the limit of V approachingwo, (N + 1/2)(w + 6) and(N + 1/2)(7 — 6) both
approacho, provided that is not near the endpointr or the endpointr. Thus
we have

—(N+1/2)6 0o .
Smmz—l/ @ﬁﬁ+l/ L (2.105)
T J o t T Jo(Nt+1/2)0 1t

Since its integrand is an even functiontothe first integral in (2.105) is equal to

1/0O sint
- ——dt.
T J(N+1/2)0 T

The two integrals in (2.105) can be combined to give

1 [© sint 2 [©sint
SM@%—/ %Lﬁ:—/‘?L% (2.106)
T)_o T T Jo t
where
0 = (N +1/2)6. (2.107)

The integral of (2.106) is an odd function &f. Thus it suffices to discuss the
behavior of this integral for nonnegative valuesbnly.
First, we considefy (6) até = 0. We have from (2.106) that

N S0 =0

which agrees with the average valuef@d™) and f(07).
Next we considef () whend takes a fixed and nonzero value. As— oo,
© goes to infinity Thus we have
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. 2 [*°sint
R
which agrees with the value ¢f(0) for0 < 6 < 7.

Thus, whenV is very large, the value of x(6) changes from zero whehis
equal to zero to approximately unity whéns equal to a fixed value, as expected.
But what are the values &y (6) when the value of is in between? Le®©,
instead ofY, take a fixed, nonzero and finite value. This means@hstiequal to a

fixed, nonzero and finite value divided by + 1/2).

When®© is finite, we have by (2.106) thaty () is approximately a function
of ©. Now sint is positive for0 < ¢ < 7, is negative forr < ¢ < 27, and keeps
changing its sign after a period af Thus the integrandint/¢ is positive for
0 < t < m, is negative forr < ¢t < 2w, and keeps changing its sign after a period
of w. Sincel/t monotonically decreases ascreases, the maximum value of the

integral
2 [©sint
_/ sin gt
™ Jo t

is reached a® = w, as the intervad < t < 7 is the maximum interval possible
for sint/t to be positive throughout. The value §§(0) at®© = =« is

T 2 (Tsint
— | == —dt.
SN <N+1/2) 77/0 t

Numerically, this value is approximately179, almost eighteen percent higher
than the value of unity, the value ¢{#) for 6 positive. Note that the value &f

at this point ist /(NN + 1/2), which goes to zero a& — oo. This shows that the
value of the Fourier partial suifiy (6) does not change monotonically frobrto

1. Rather, it starts at the value of zerodat= 0 and overshoots its target value by
almost eighteen percent@t 7 /(N + 1/2).

Neither doesSy (6) move down from its peak value to its target value mono-
tonically. As© becomes larger than Sy (0) decreases as the integrand of (2.106)
becomes negative in the region of integration =. The functionSy () reaches
a minimum at? = 27 /(N + 1/2) and then starts increasing again. In fact, it os-
cillates around the value of unity many times before it approaches the asymptotic
value of unity. If we plot the functiowx (6) as a function ob, the distances be-
tween peaks and valleys shrink to zeraNagncreases to infinity, while the heights
of the peaks and valleys stay constant.

This oscillatory behavior of,,(¢) is called the Gibbs phenomenon.
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G. The Laplace Transform

Let a functionf(x) be given forx > 0. The Laplace transform for such a function
is defined to be

L(s) = /000 e ¥ f(z)dx, (2.108)

provided that the integral converges. In the abavs,independent of.

® Problem for the Reader

Find the Laplace transforms of the following functions:
a z"/nl,n >0,
b. e 27,
C. cos kx andsin kz,
d. %’
What is the analytic property of each of these Laplace transforms as a fungtion
of the complex variable?

€ Solution

a. z"/n!
It is known that

o0
/ e tndt = nl.
0

& 1
/0 dre %% x" /n! = P (2.109)

The integral above is convergent onlyRfes > 0. If Res < 0, the Laplace
integral above is divergent. Therefore, the Laplace transformi*a$ defined by
the Laplace integral above only in the right half-pldxes > 0. We see that in this
half-plane,s—"~! is an analytic function of.

When the integral above is not convergent, we call the right side of (2.109) the
Laplace transform o™ /n!. In other words, we simply define the Laplace trans-
form of 2 /n! in the left half-planeRe s < 0 to bes—"~!. The Laplace transform
of 2 /n! so defined is an analytic function sfwith the exception of an‘"-order

Therefore,
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pole ats = 0. Thus we have analytically continued the Laplace transform of
x™ /nl, defined by the Laplace integral in the right half-pldhes > 0, to the left
half-planeRe s < 0.

b e*(lx

The Laplace transform af %% is

&0 1
/ dre e = . (2.110)
0 s+ta

The integral above is convergent onlyRE(s + a) > 0. We analytically continue
this Laplace transform by defining it és+a)~! for all s. It is analytic everywhere
with the exception of a simple pole at= a.

C. cos kx andsin kx
Replacinga in (2.110) byik, we have

/ dre Te e — .
0 S + 'lk

Restricting to real values afandk, we obtain from the real part and the imaginary
part of the equation above

/ dze™® cos kx = 5245-71@ (2.111)
0
and
> k
A dm@isx Sil'l ka = m (2112)

The integrals in (2.111) and (2.112) converges ifs greater than zerd-or
complex values ok and k, we simply define the Laplace transforms ok kx
andsin kx to be the right sides of (2.111) and (2.112), respectively. The Laplace
transforms so defined are analytic functiong efith simple poles at = +ik.

d. e*”
As z — oo, the functione®” blows up so rapidly that—s%¢2” for any value of
s always blows up ag — oo. As a result, the integr%OO e~5e? dz is divergent
no matter whas is. Thus the functior®” has no Laplace transform.
We note that the Laplace transformslog—%*, andcos kz all approach /s as
|s| — oo. As a general rule, the Laplace integral in (2.108) approag¢ley s as
|s| — oo provided thatf(0) is finite and does not vanish. This can be shown by
the methods we shall give in Chapter 8.
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We observe that each(s) in the examples given is an analytic function of
s in the region where its Laplace integral converges. This is true in a more gen-
eral context. The integrand in (2.108) is an analytic function.o€onsequently,
the integral in (2.108) is an analytic function &fin the region ofs where it is
convergent. Let
s = 81 + 159,

wheres; ands; are the real part and the imaginary parspfespectively. Now we
have

—s1x

75:1:} —e

le

As the value ofr in the Laplace integral is always positiwe, *1* becomes
smaller ass; becomes larger. Thus, if the integral of (2.108) convergeas-at,
then the integral of (2.108) converges forsaflatisfyings; > Re &y. HenceL(s) is
an analytic function of in the right half-plan&ke s > Re &. In particular, if L(s)
exists whers is purely imaginaryL(s) is analytic in the right half-plang; > 0.
If such is the case, all of the possible singularitied.g§) lie to the left of the
imaginary axis.

The Laplace transform is a special case of the Fourier transform. Let

F(z) = f(z), = >0,
=0, =<0, (2.113)

and let the Fourier integral df(x) converge. Then the Fourier integral of (2.53) is
the same as the Laplace integral of (2.108) witentified withik. Thus we have

L(ik) = F(k). (2.114)

This shows that iff'(k) exists whenk is real, L(s) exists whens is purely
imaginary. If such is the case, (2.54) gives

f(z) = /Z eik‘”L(ik)%, z > 0. (2.115)

Replacingk by —is, we obtain
flx) = /2'00 e””L(s)ﬁ x>0 (2.116)
)i 271’ ’ '

where the integration is over the imaginargxis. Equation (2.116) is an inversion
formula that enables us to determine the valueg(af) once the values af(s) on
the imaginary axis of the-plane are obtained.
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We have implicitly assumed in the above tlfét) is a continuous function of
x. At the pointzy wheref(x) is discontinuous, the left side of (2.116) should be
replaced by

flzg) + flzg)
5 .

In particular, if f(0) # 0, the functionF'(x) of (2.113) is discontinuous at = 0,
and the inversion integral of (2.116)at= 0 is equal tof (0)/2.

We may think of (2.116) as the contour integral

flx) = /es"’”L(s)ﬁ x>0, (2.117)

2mi’
wherec is the imaginary axis of the complexplane. Sincd.(s) is analytic in the
right half-planeRe s > 0 by assumption, all possible singularities of the integrand
lie to the left ofc.
The contour does not have to be a straight line. We are allowed to deform
into another contour in conformity to the Cauchy integral theorem.
If we differentiate (2.108) with respect & we get

dL(s) _  [¥ _w
1. = /Oe zf(x) dx.

The integral above is convergent for > Re¢ if the Laplace integral con-
verges ats = &. This is because—*1* is smaller if s; is larger, as we have
mentioned above. Therefore, the Laplace transformfadfr) is —dL(s)/ds.

On the other hand, if we differentiate (2.117) with respect,twe get

df(z) _ / e (s) 25 (2.118)

dx omi

However, (2.118) is not always valid, as the integral in (2.118) is not always
convergent. Indeed, if(0) is finite and is not equal to zeraL(s) approaches
the constanif(0) ass — +ioo, while e** is oscillatory and does not vanish as
s — *ioco. Thus the integral in (2.118) does not convergé(i)) does not van-
ish, and (2.118) is not meaningful. Therefoed,(s) is not always the Laplace
transform ofdf (z) /dz.

Let us find out what the Laplace transformdsf/dz is. We have

/OO dxe *df (x)/dx = — f(0) + /OO dx se”** f(x),
0 0

where we have performed an integration by parts. Thus the Laplace transform of
df /dx is
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—f(0) + sL(s), (2.119)
which is equal tasL(s) only if f(0) = 0.

® Problem for the Reader

Express the Laplace transformd¥f /dz? with L(s).

€ Solution

After performing two integrations by parts successively, we find that

/0 ~ dze—sr 2 f(z)/dz? = —f'(0) — sf(0) + s*L(s). (2.120)

We mention that the integral in (2.117) is equal to zeto # 0. This is because
if x < 0, e®1* approaches zero ag approaches-oco. Therefore, the integrand
in (2.117) vanishes at the infinity of the right-halplane and we may close the
contour to the right. Since the integrand has no singularities in the right half-plane,
the integral is zero by Cauchy’s integral theorem. We may add that this is consistent
with the definition of F'(z) for z < 0 as given by (2.113).

We have shown that the contour integral (2.117) is valil(i§) is analytic in
the regionRe s > 0. If this condition is not met, i.e., if.(s) has singularities in the
regionRe s > 0, the only modification needed is to makim (2.117) a vertical line
that lies to the right of all of the singularities éf s). To see this, let us multiply
f(x) by the exponentially vanishing functien®* and call

g(z) = e " f(z). (2.121)

We shall assume that it is possible to choasso thatg(x) vanishes sufficiently
rapidly asz — oo and the Laplace transform gfz), given by

G(s) = /000 e *g(x)dz, (2.122)
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is analytic in the right half-planBe s > 0. By the inversion formula of Laplace
transform, we get

g(z) = /100 esmG(s)d—S (2.123)

ico 2mi

Replacingg(z) with e~%* f(x), we obtain from (2.122) that
G(s) = / e e ¥ f(x)dx = L(s + a).
0

SinceG(s) is by assumption analytic in the regi®e s > 0, L(s) = G(s —a)
is analytic in the regioie s > a.
Replacingg(z) with e~%* f(x), we obtain from (2.123) that

f(z) = /100 et (s + a)Qd—S

—ico TI"L"
This formula can be written as

flz) = /esmL(s)%, (2.124)

wherec is the straight lines = a + is. SinceL(s) is analytic in the region

Re s > a, all of the possible singularities df(s) are at the left of the contour
Laplace transform is useful in solving differential equations with initial condi-

tions. As an example, let us consider the solution of the differential equation

d2y

@+y:1,x>0,

satisfying the initial conditiong(0) = 1, ' (0) = 2.

® Problem for the Reader

Solve the initial-value problem above by Laplace transform.

€& Solution

By (2.120), the Laplace transform of the left side of the differential equation is

—2 — s+ (s> + 1)L(s).
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Note that the first two terms in the expression above are given by the initial
conditions. The Laplace transform of the right side is equatto Equating these
two Laplace transforms gives

-1
s +24s
Lis)=—07—

By (2.124), we have

-1

s +2+4+sds
€Tr) = esx7—7
y(@) / 1+s2 2mi

wherec is a vertical line lying at the right of the imaginasyaxis. Forz > 0, e5*
vanishes as; — —oo. Therefore, we may evaluate the integral above by closing
the contour to the left. By Cauchy’s residue theorem the integral is equal to the
sum of the residues of the integrandsat 0, ¢, and—:. Thus we get

y(x) =1+ 2sinz, x>0.

Note that the initial conditions have already been incorporated. Therefore, un-
like under the method used in Chapter 1, there are no arbitrary constants in the
solution obtained here, and we are spared the chore of determining the arbitrary
constants with the use of the initial conditions. It is easy to verify that the initial
conditions are indeed satisfied by this solution.

© Homework Problems for This Chapter

Solutionsto the Homework Problems can be found at www.lubanpress.com.

1. Prove that the limit of (2.5) is the same for afy if the Cauchy-Riemann
equations are satisfied by the real part and the imaginary p#ftof
2. Prove thatos 2% = \/54_ 1.

Hint: Let ™/ = ¢ + is; then

(c+is)5 = —1.
Equate the imaginary parts of the two sides of this equation.

3. A function that is analytic everywhere in the finite complex plane is called
an entire function. Prove the Liouville theorem that an entire funcficr)
is a constant if it is bounded at infinity.
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Hint: Show thatf’(z) = 0 with the formula
/
fl(z)= L lim j{ {(72)2dz’,
271 R—oo J. (2 — 2)
wherecg, is a circle with its center at the origin.

4, Evaluate the following integrals with contour integration:

> dx
& /oo @+ (e~ 20)(z -~ 3i)( — 1)’
Ans.—ﬂ.

60
o [y,
—oo T

AnNs. 2.

* sin®
C. 3 dx.
o X

Ans. 3w /4.
27 1
d. — - df b>0).
/0 (a+ bcosb)? (a>5>0)
Ans.2ra/(a? — b2)3/2.
*©  gzxsinzx
e. /Oo PR dz.

Ans. 7.

5. Explain why the integral of (2.35) is not equal to the imaginary part of

2
e
/—dz
c R

if cis the contour in Figure 2.7
o
/ sma:'dx'
oo Tt
Ans. T
(&

Explain why it is not fruitful to evaluate the integral

0 eix
J:/ -dx.
P

6. Evaluate the integral
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1+v/1+ 22

7. Considerf(z) = log 5

a. Find all possible branch points of this function.
Ans. 0, £4, co.

b. If we definev1+ 22 |,_o= 1, show that the origin is not a branch
point of this function. Draw a set of branch cuts to make the function
single-valued.

8. Show that the Taylor series (2.19) is convergent inside the circle with center
at zp and with the radius equal ey, — 21|, wherez; is the singularity of
f(2) nearest tay.

Hint: Estimate the magnitude gf™ (z) with the use of the Cauchy integral
formula.

9. Let f(2) andg(z) be analytic in a regio®?, and letz, be an interior point of
R.If f(z) = g(z) has at least one root in any neighborhoodpio matter
how small this neighborhood is, prove thfdt) = g(z) in R.

Hint: Let G(z) = f(z) — g(2) and consider the Taylor series expansion of
G(z) aroundzy. Show that unless this series vanishes identically, it cannot
vanish atz if z is sufficiently close ta; but not equal ta.

10. LetIn:/ dr
0 1+$n

a. Prove thatl,, = L What isI,, in the limitn — oco?
nsin(w/n)

b. Show that a1 — oo, the limit of the integrall,, is equal to unity
integrated ovef0, 1].

11. Evaluate the following integrals making use of branch cuts:

1 3

1 T
b [ — - da.
/0 (e ——

Hint: The integrand has a square-root branch cut ffbioe 1. One
considers the sum of the following five contours: 1. The straight line
joining ie to 1 + ie; 2. The straight line joining — ie to —ie; 3. The
right half-circle in the clockwise direction with centerlaand with the
radiuse; 4. The left half-circle in the clockwise direction with center at
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0 and with the radiug; 5. The infinite circle in the counterclockwise
direction. You may prove that asapproaches zero, the contributions
from contour 3 and contour 4 are zero, and the contribution from con-
tour 2 is equal to that from contour 1. The contribution from contour
5 can be calculated. The sum of the contributions from these five con-
tours is equal to, by Cauchy’s residue theor@my times the sum of

the residues of the integrand in the cut plane.

mcos(m/8)

Ans. T — 51/1

Hint: Add to the contour of the positive real axis the ray joining zero
to infinity with the argumengx /5. On this ray,z® = 75, andln z =
Inr + 27/5.

12. Let 2, be an isolated singularity of(z), and letz be a point in the neigh-

13.

borhood ofzy. Show that

PR S A (CO D S CO )

2mi Jo, 2 — 2 2mi Jo 2 — 2

whereCr andC, are counterclockwise circles, the centers of which are at
zo and the radii of which aré? ande, respectively. AlsoR is sufficiently
large so that is insideCr, ande is sufficiently small so that is outside

C.. Derive the Laurent series expansionfgt) from the equation above
and discuss the region where the series is convergent.

Find the Fourier coefficient,, for the following functions. What is the value
of the Fourier series &= 77

0

a e’.

(=1)"e™ —e " : .
Ans. a, = ——. The value of the series & = = is
2 1—1in

1
5(@7r +e ).
1

" a+bcosh’

Ans.a, = (~1)" (a - m)"/ (V=) (n > 0), - =

a,. The value of the Fourier seriestat= 7 is (a — b) L.

14. Letw andw be functions ofc andy. Prove that

(?u) . (?v) = UpUp + UyUy = 2(UpVzx + Uzevy).
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15. Show that if f(z) is analytic everywhere in the complex plane with the ex-
ception of a branch cut fromato b on the real axis, does not blow up as fast
as a pole at the endpointsandb, and vanishes at infinity, then

e = [ CI@) gy,

' —z

with 27ir(z) the discontinuity off (z) across the branch cut.

/ /
Hint: Consider the integr%i : / f(#)dz
™

Z -z
closed contour wrapping around the interjalb] in the clockwise direction.
Show that this integral is equal §dz) provided that is outside this contour.
Now make this contour to be infinitesimally close to the line frarto b on
the real axis.

with the contour of integration a

16. Find the Fourier transforms of the functioss*! and(1 + z2)~2.
Ans.2(1+ k%)~1 andz(1 + |k|)e~ ¥l /2.

17. The convolution ofF'(x) andG(z) is defined to be

a. Calculate the Fourier transform @f (x) and show that it is equal to
F(k)G(k), whereF' (k) andG(k) are the Fourier transforms @f(x)
andG(x), respectively.

b. Use the result above and show thfat_ F(—z)G(z) dx

= [ F(k:)@(k:)%.

18. The convolution off},, (z), m = 1,2,--- ,n,is

n

H(x):/del/deg---/den6<x— z:xm> I Fnlam).

n=1

Show that the Fourier transform &f (z) is I17,_, E,,(k), whereF,, (k) is
the Fourier transform of,, ().

19. Let f(x) andg(z) be defined forr > 0. The convolution off (z) andg(z)
is defined to bef;’ f(z — 2’)g(z) da’. Show that the Laplace transform
of the convolution off(z) andg(x) is equal to the product of the Laplace
transform off(x) and that ofg(z).
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20. Solve with the method of Laplace transform the initial-value problem

d2
—y+y:\/57$>07
dxz?

with the initial conditiony(0) = 1, /(0) = 0.

Hint: the Laplace inversion integral fgi(z) cannot be evaluated with

Cauchy’s residue theorem, as the integrand of this integral has a branch point.
Make use of the result of Problem 19 and exprggs as a convolution of
elementary functions.
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Chapter 7

The WKB Approximation

The WKB method is a powerful tool to obtain solutions for many physical prob-
lems. Itis generally applicable to problems of wave propagation in which the wave
number of the wave is very high or, equivalently, the wavelength of the wave is
very small. The WKB solutions are approximate solutions, but sometimes they are
surprisingly accurate. In this chapter wdiscuss this methodavyhich is gplicable

to linear equations only.

A. WKB in the Zeroth and the First Order

Consider the first-order linear differential equation
y' = ipy.
If pis a constant, the solution is simply
y = e,

which describes a wave of propagation numper
But if p is a function ofz, the solution of this equation is

y(z) = exp <z / p(m)dm) .

If we regardy(x) as a wave, then the exponentyifr) is the phase of a wave
with the wave numbep(x). We see that at the point the phase is equal to the

239
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waveshift accumulated over the path of propagation, nettimes the local wave
numberp(x)—a perfectly logical result.

We mention that a change of the lower limit of the integral above merely
changes the integral by an additive constant, and hgrgea multiplicative con-
stant. For a linear homogeneous equation, the freedom of multiplying a solution by
a constant is always understood. Thus we shall leave the lower limit of integration
unspecified.

Next we consider the second-order differential equation

y' +p’y =0. (7.1)

If p is a constant, the two independent solutions of (7.1)eatg tipz), waves
with wave numbep travelling in opposite directions of theaxis.

If pis a function ofz, it appears reasonable that the solutions are two waves
with the phaset [ p(z)dz. Thus we may surmise that the independent solutions

of (7.1) are
+i x)dz
e /p( ) , (7.2)

which are called the zeroth-order WKB solutions.
Let us see if these solutions satisfy (7.1). It is straightforward to show that

+1 x)dzx +1 x)dzx
(d—2+p2)e /p( ) = +iple /p( ) ) (7.3)

dx?

Therefore, the WKB solutions (7.2) do not satisfy (7.1) unlgss= 0, or p is
independent of.

While we get a negative answer, (7.3) suggestsithat+: [ p(z)dz) are good
approximate solutions of (7.1) provided thiaip’ is negligible, or, more precisely,
if

'] < %,

the right side of this inequality being a term inside the parentheses of (7.3). The
inequality above can be written as

d 1

Em < 1. (74)

In particular, this condition is satisfied if the wave numpgr) is of the form
p(x) = AP(z), (7.5)

where is a large constant, i.e.,
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A> 1, (7.6)

and P(z) is of the order of unity. We have assumed that none of the constant pa-
rameters inP(z) are large. Indeed, ii(z) is given by (7.5), the inequality (7.4) is

1d 1
‘ < 1. (7.7)

Xda P(x)

Clearly, (7.7) is satisfied ik > 1, provided thate is not near a zero aP(z).

As a side remark, while it is easy to accept that we may drop a term in the
equation that is much smaller than a term in the equation being kept, we shall see
in later chapters that this is not always a valid procedure. For example, the effects
from a small term of the differential equation may add up, and as the solution
evolves over a long interval of the independent variable, small perturbations may
accumulate into a large correction. A justification of the WKB solutions will be
given later.

We note that the phases of the solutiers(=+: [ p(z)dz) are functions of,
but the magnitudes of these approximate solutions are independentladt us
remember that, in Chapter 1, we have shown thgt #ndys are two independent
solutions of (7.1), then the Wronskid# (z) = vy1y5 — yiy2 is independent of.

Now the Wronskian oéxp(i [ p(z)dz) andexp(—i [ p(z)dz) is easily shown to
be equal t@ip(z), not a constant unleggz) is a constant. This suggests that these
approximate solutions still leave something to be desireztaBse the Wronskian
of the approximate solutions miss by a factop¢f), let us try to fix it by adding

an additional factot //p(z) to each of the approximate solutions. The tgsg
approximate solutions are

1 i /p(x)dx
—€
p(z)
which is said to include both the zeroth-order and the first-order terms of the WKB
approximations.
The magnitude of these solutions varies witlke 1//p(z). The Wronskian
of yViVKB(x) is now exactly a constant. (See homework problem 1.) It is therefore

tempting to surmise that under the condition (7.4) or, equivalently, (yvi;I}B(x)
are even better approximations than

i / plo)ds

To see if this is true, we put

Yivks () = : (7.8)




SAMPLE: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng ISBN: 0975862510

242 THE WKB APPROXIMATION

+1 x)dx
y=e e v, (7.9)

and substitute this expressionpinto (7.1). We get

(D + ip)(D =+ ip)v + p*v = 0,

or
d? od
(@i%p%:tzp> v=0.
We shall write the equation above as
i i
v+ %v = :l:%v". (7.10)
By (7.5), (7.10) can be written as
P’ )
v+ apl = ie#v", (7.11)
where
e=1/A

is a small number. In the first-order approximation, we ignore the right side of
(7.11) and we get

P/
!/ PSP .
v+ 5p" 0, (7.12)
which gives
1
v(z) ~ 7.13
(z) G (7.13)

Thus (7.9) and (7.13) give, aside from an immaterial overall constant, the WKB
solutions (7.8).

The more traditional way to derive the WKB solutions is given in homework
problem 2 in this chapter.
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We have mentioned that #(z) has a zero at, the inequality (7.4) does not
hold atzy. To see how far away from, it must be for the WKB approximation to
hold, let P(x) nearx, be approximately given by

P(z) = a(x — z9)", x= xp. (7.14)
Equation (7.7) requires
n \1/(n+1)
& — 0| > (E> . (7.15)

Equation (7.15) tells us how far away frarp it must be for the WKB approximate
solutions to be valid.

We mention that if?(z) vanishes in the way given by (7.14), we say tRat)
has am'"-order zero atry. Not all zeroes ofP(z) are of finite order; an example
of P(x) having a zero of infinite order is given by homework problem 7.

As we have stated at the beginning of this chapter, the WKB approximation is
useful for describing the propagation of waves with very small wavelengths. We
shall now explain what this means more precisely. The wave number for the WKB
solutions (7.2) i»(z), and the corresponding wavelengtir) is 27 /p(z). When
A of (7.5) is largep(z) is large and the wavelengfl(z) is small. In the meantime,
the inequality (7.4) is satisfied, justifying the WKB approximation.

While all of this is straightforward in mathematical terms, we deem it useful
to clarify it furtherin physical terms. Tis is because the wavelength has the di-
mension of the distance, and the numerical value of a wavelength depends on the
distance unit we choose. For exampl®, ® centimeters is exactly the same as
10* nanometers. Whil@0—3 is a small number]0* is a large number. Is the
wavelength of such a value small or large?

The fact is that it is not meaningful to classify a quantity as either small or
large unless we compare it with another quantity of the same dimension. Let us
first examine (7.4) in this light. Expressed in termgxfr), (7.4) is

1.
dr 27 <

As bothd2(x) anddz have the dimension of length§2(x)/dz is dimension-
less. Since it is meaningful to say that a dimensionless quantity is much less than
the dimensionless constant unity, (7.4) is meaningful.
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® Problem for the Reader

What is the dimension of p(z)dz?

€& Solution

The wave numbep(z) has the dimension of the inverse of the distance. Silace
has the dimension of distance, the integfalz)dz is dimensionless. We may add
that the integral/ p(xz)dz appears in the exponent of the WKB solutions, and an
exponent should always be a dimensionless quantity.

We shall now explain what is the physical quantity we must compare the wave-
length to. Letp(z) in (7.1) be equal ta~! P(z/L), where bothz and L have the
dimension of length, and whe®(z/L) is dimensionless and is of the order of
unity. ThenQ(xz) = 2ma/P(z/L). This says that the magnitude 8fx) is of
the order oR27wa. Note thatz/L is dimensionless and by(x) being a function of
x/L we imply thatL is the scale characterizing the variation of the wavelength as
a function ofz. This means that the derivative Qf x) is of the order ofi / L times
Q(z). ThereforedQ)(z)/dz is of the order oRma/L. As a result, the inequality
(7.4) is satisfied if

a/L <1,

or
a << L.

This says that the WKB approximation is valid if the wavelength is small com-
pared t27 L, whereL is the length characterizing the scale of the variation of the
wavelength.

As a trivial example, ifp is a constant, the wavelength does not change no
matter how much: varies. Thud. is equal to infinity and the wavelength is much
smaller thanL. Indeed, ifp is a constant, the WKB solutions are not only good
approximate solutions of (7.1), but the exact solutions of (7.1).

Let us revisit the case of (7.5), for which the WKB approximation has been
justified. In this case, we have= A~'andL = 1. Henceua is much less thaii.
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® Problem for the Reader

Consider (7.1) withp(z) = P(ex), wheree < 1 andP(ex) is of the order of unity,
i.e.,

d2y 2

w + P (Eﬁ)y = 0.
Note that the coefficient qf in this equation is not large, but varies slowly with
Can we apply the WKB approximation to this equation?

€ Solution

The WKB approximation is valid if (7.4) is satisfied. Since

d 1 P'(ex)

dx P(ex) _EPQ(ex)’

(7.4) is satisfied it is very small andP does not vanish. Therefore, we conclude
that we may apply the WKB approximation to (7.1) witfx) = P(ex) whenz is
not near a zero aP(ex). We note that in this case,= 1 andL = e¢~!. Thus the
wavelength is again much smaller than the characteristic lefagth

The case op(z) = P(ex) and the case gi(z) = AP(x) are actually related
by a change of the scale of the independent variable. To wit, let

X = ex;
then eq. (7.1) withp(z) = P(ex) becomes

d2

s+ NP (X)y =0,
where the large parametaris equal toe~!. This says that if we us& as the
independent variablg,is in the formAP(X).

We mention a couple of physical problems in which the WKB approximation
is useful. Consider the problem of determining the shadow cast on a wall by a point
light source in front of a screen. To obtain the exact solution of this problem, one
solves the wave equation and makes the solution satisfy the boundary conditions
imposed by the presence of the screen. This is a difficult boundary-value problem.
On the other hand, the shadow on the wall is very accurately determined simply
by drawing straight lines from the light source to the edges of the screen. This is
because when the wavelength of light is very small compared to the dimensions
of the screen, the WKB approximation can be used to justify the results obtained
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with the use of geometric optidsAs another example, we know that Newtonian
mechanics is an approximation of quantum mechanics. However, the behavior of
atoms obeying the rules of wave mechanics is drastically different from that of
particles obeying the rules of Newtonian mechanics. How does one reconcile these
two sets of rules? The answer again lies in the WKB approximation, in which the
Schiodinger equation is reduced to the Hamilton-Jacobi equation satisfied by the
classical action of Newtonian mechanics.

The WKB approximation can also be used to solve problems in which the
functional behavior is rapidly growing or rapidly decaying rather than rapidly os-
cillatory, an example being the problems of boundary layer, which we will discuss
in Chapter 9. Consider the equation

y' —n’y =0. (7.16)

The WKB solutions are given by

1 * / (@)

Yirren () = (7.17)
n(z)
These solutions are good approximations of the solutions of (7.16) if
d 1
@m < 1. (7.18)
The counterpart of (7.5) is
n(z) = AN (z), (7.19)

whereX > 1 and N (z) is of order unity. As before, if; is in the form (7.19), the
inequality (7.18) is always satisfied unlests near a zero oN ().

B. Solutions Near an Irregular Singular Point

In some mathematical problems, the large parameismot explicitly exhibited.
As an example, consider the problem of solving the equation zy = 0 whenx

1S. I. Rubinow and T. T. WuJournal of Applied Physics 27:1032 (1956); T. T. WuPhysical
Review 104:1201 (1956).
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is very large. In this problemy; inherently contains a large parameter. Indeed, let
x be of the order of\, with A > 1. We may put

r=AX,

whereX is of the order of unity. Then the Airy equation is

This is in the canonical form for which the WKB method can be applied.

Thus the WKB approximation is useful for obtaining the asymptotic solutions
near an irregular singular point of a second-order linear homogeneous equation.
While we have already given a method in the preceding section to obtain these
solutions, it applies only when the rank of the singular point is an integer. The
WKB method has no such restriction. In addition, the use of the WKB method
makes it easy to obtain the leading terms of the asymptotic series.

Let us consider the leading asymptotic terms for the solutions of the equation

vy’ +zy = 0. (7.20)
Forx < 0, we have, comparing with (7.16),
n=(—z)"%
Thus the WKB solutions are
oL E2 P23, (7.21)

We conclude immediately that whenis large and negative, one of these solu-
tions is an exponentially increasing functionzofind the other is an exponentially
decreasing function af.

Whenz is positive, we have, comparing with (7.1),

p:ml/Q.

Thus the WKB solutions are

0 ,.3/2
m71/4€:tl233 / /37 (722)

both being oscillatory functions af.
Next we will give the entire asymptotic series for whets positive and very
large in magnitude.
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® Problem for the Reader

Find the asymptotic series for the solutions of the equation (7.2Q) for1.

€& Solution

We note from the power function of the exponent in the WKB solutions that the
rank of a singular point at infinity i8/2. Since the rank is not an integer, the
method given in the gceding chapter cannbg directly applied. By (7.4), these
WKB solutions are good approximate solutions if

x> (1/2)%5,

To find corrections of the WKB solutions, we put

2(133/2
y=-exp | =* 3 1| .

Thenw satisfies the equation

d 1 i d?

The dimension of the operator on the left side of the equation above,ighile
the dimension of the operator on the right side-i5/2. These two dimensions
differ by 3/2, which is not an integer. Thus we make the change of variable

pEm3/2.

In terms of the variablg, these two dimensions differ by unity, an integer.
Then (7.23) becomes

d 1 3i(d 1\dv
—+ —Jv=2t=(—4+ =) —. 7.24
(dp " 6p> ’ 4 (dp " 3p> dp (7:24)

v = Zanpfnfs, ag#0, and a_1 =a_9=---=0. (7.25)

Let

We have
dv v 1 n—s—1
d—p‘l-@—g —(n+s—6>anp N
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and

:I:Bi ( d + 1 > dv _ :I:ﬁ [(n+s)(n+s+1)—1/3(n+s)]a,p " 52

4\dp 3p)dp T4
= :l:% (n+s—1)(n+s—1/3a,_1p " L.
Thus we get
1 31
—(n—l—s—6>an::I:Z(n—i—s—l)(n—i—s—l/B)an1. (7.26)

Settingn = 0 in the equation above, we get
s=1/6.
We sets = 1/6 in (7.26) and get, fon > 0,

(n—5/6)(n—1/6) [ _3i\" T(n+1/6)[(n+5/6)
n-1 = (:FZ> T(1/6)T(5/6)n!

31
an = F—

= agp.
" 4 n

27)

Therefore, forr >> 1, the two asymptotic solutions of (7.20) are

o exp <i2m3/2i> i (:F@>" (n+1/0)T(n+5/6) g/ (7.28)

3 4 n!

n=0

® Problem for the Reader

Find the WKB solutions for the Bessel equation

2 d
p’—=+p—+p>—p* ) Y(p) =0. (7.29)
dp dp

€& Solution

First we transform eq. (7.29) into the form of (7.1). This is done by putting

Y (p) = p?y(p),
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getting
d? p? — 1/4>
— +1- =0
(dp2 p?
Identifying
2
p~—1/4
b= 1- 2 )
p
we have, whem is large,
p~1.

Thus we have

and
Ywxs(p) = p~ '/ exp(+ip). (7.30)

This is in agreement with the leading terms of (6.63) and (6.64), found with a little
more effort.

The WKB solutions sometimes even help us to obtain the exact solution of an
equation.

© Problem for the Reader
Solve in closed form

2
S (m2 N @) Y =0, (7.31)

€& Solution
The WKB solutions of (7.31), valid forz| > 1, are easily found to be

2 .
ywrs(z) = z—1/2 exp (:I:%) . (7.32)
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The exponent in (7.32) is equal to a constant tim&sthus infinity is a singular
point of the ODE of rank two. (We see once again that using the WKB method is
an easy way to obtain the rank of a singular point.)

Let us look into the possibility off being a Bessel function. Comparing the
exponent of the solution of (7.30) with that of (7.32) suggests to us that

p=" (7.33)

With this identification of the independent variables, the exponential function of
the solution of (7.30) is now equal to that of (7.32). Yet the factor multiplying the
exponential function of (7.30) js~ /4, which differs from that of (7.32) by a factor
of p~ /4. Let

Y = p71/4y; (7.34)
then the asymptotic forms df are exactly the same as those given by (7.30).
Therefore, we make the change of the independent variable (7.33) and the change
of the dependent variable (7.34) for equation (7.31). Then it is straightforward to

show that eq. (7.31) becomes the Bessel equation with pregual tol /12. Thus
the general solution of (7.31) is

y(z) = zt/? [aJ1/12(332/2) + bJ—1/12(332/2)] ) (7.35)

wherea andb are constants.

® Problem for the Reader
Show that the parabolic functiab, (x) satisfying the equation

v+ (v+1/2—2%/4)y=0

is not directly related to the Bessel functions unlkess —1/2.

€& Solution

Let

n=yx?/4—v—1/2.
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Whenz is large and positive, we have
ne~a/2— (v+1/2)z 7t

Thus
/ndm ~ 2% /4 — (v+1/2)Inz.

Note that while a term im that is equal to a constant times® is small whenz
is large, it generates a term jimdz that is equal to a constant timksz. Such a
term is large when: is large, and cannot be ignored. The WKB solutions for this
equation are
Vi () = 2"e

and )

y;VKB (:L‘) — :L,fyfleil,‘ /4‘
The power functions for these two solutions are different unkess—1/2 , while
those for the Bessel functions are the same. Thus, unless-1/2, the parabolic
cylinder functionD, (z) is not equal to a power function times a Bessel function
Zp(p), wherep is any number ang is any function ofz.

Finally, we mention that while one may get the notion that (7.4) is likely to hold
in the region ofr wherep(z) is very large, this is not always the case. Consider

p(z) =1/, (7.36)
which is very large when is small. Yet

a1 .
dep(z)

which is not small wher: is small.

C. Higher-Order WKB Approximation

We shall in this section find the higher-order terms of the WKB approximation. For
this purpose let us return to eq. (7.11). Since this equation has a small parameter
e and is linear, it is straightforward to use it to derive successive corrections to the
WKB approximations. We put
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V=19 + ev; + vy + -+, (7.37)

wherewv,, n = 0,1---, are independent of. The series in (7.37) is called a
perturbation series, which is expected to be useful whisrsmall. We substitute
(7.37) into (7.11) and get

/

P
(U0+€U1+€2U2+"')/+ﬁ(vo+€v1+€2U2+"')

= i%(vo + ev1 + 621)2 + - )//. (738)

In the lowest-order approximation we gdh (7.38) to zero and get

/
v’ + %vo =0.
This equation gives
1
vo(z) = W,
which is, aside from an immaterial constant multiple, (7.13).
Setting to zero the sum of terms in (7.38) that are proportionglue get

vg+wv1:i ! ( 1( )). (7.39)

2P(z) 2P(z) \ /P

Solving this first-order linear equation, we find that

(7.40)

vi(z) ==+ ! / ! ( ! ) ' dt.
2/P(z) ) /P(t) \ v/P(t)

Now we are ready to give a justification of the WKB method, which is approxi-
mating the solution of (7.1) by truncating the series of (7.37). Strictly speaking,
truncating a series is justified if we succeed in proving that the sum of terms ne-
glected is much less than the sum of terms kept. But proving this is sometimes
difficult to do. We shall be content with proving that tbe + 1)t term in the
series is much less than thé&" term if ¢ is sufficiently small. Thus we will accept
that the WKB solutions (7.8) are good first-order approximations if

levy | < |vo]- (7.41)
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Sincee is small, (7.41) is satisfied provided that(x)/vo(z) does not blow up,
which is true unles®(z) happens to vanish.

If P(x) vanishes at, the differential equation (7.1) is said to have a turning
point atxgy. At a turning point of the differential equation, we may prove from
(7.40) that the rati@; /vy blows up, and the WKB approximation fails.

How far away from the turning point must it be in order for the WKB approxi-
mation to work? If when: is nearzq, P(x) goes to zero lik¢z — x¢)", thenv; (x)
blows up like

(z — xy) 1732, (7.42)
while v(z) blows up like(z — z9) ~"/2. Thus (7.41) requires

1

PNV (7.43)

|1‘ - l‘o| >
Aside from a multiplicative constant, (7.43) is the same condition as (7.15).
We may find all higher-order terms of the solution from (7.38). This is done

by gathering all the terms in (7.38) proportionakt® and setting the sum to zero.
We get

P '
U + 350 = iévg’ﬂ. (7.44)
Thus
dz d?

vm(z) =

(z). (7.45)

“o/P@ ) JP@ 2

From (7.45), we obtain the'"-order term of the perturbation series once the-
1)th-order term of the perturbation series has been found. Thus we obtaip all
by successive iteration.

If P(x) has no zero, alk,, are finite. Wher is sufficiently small, we have

€V | < |Um—1]- (7.46)

Thus the WKB approximation is justified to higher orders. Here we like to give
the reader a reminder: The WKB approximation has been justified to higher orders
only if p(z) is of the form (7.5) or(x) is of the form of (7.19), and neither of them
vanishes. (I feel obligated to say it as | have seen the WKB approximations being
too liberally applied.)
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We may show that if?(z) vanishes at;; and is given by (7.14) neart,, the
condition (7.46) is satisfied provided thats sufficiently far away fromxy so that
(7.15) is satisfied. (See homework problem 3.)

The high-order WKB approximations for (7.16) can be obtained in a similar
way. We put

y = et n(@)dey, (7.47)
Then we have
v+ n—/v = iv" (7.48)
o'~ Tapt '

We may use (7.48) to obtain successive approximations of the WKB solutions of
(7.16).

D. Turning Points

As we have mentioned, the WKB approximation is useful in problems of wave
propagation. In this section we demonstrate this by applying it to the wave equation
that governs the quantum mechanical behavior of a particle.

Consider the time-independent Saotiriger equation of one spatial dimension
discussed at the end of Chapter 5. We will write this equation in the form

2
%§+AHE—V@H¢:m (7.49)

where) is equal toy/2m divided by the Planck constant, with the mass of the
particle. We shall consider as a very large number.

As we have mentioneds|? is the probability density of the particlé; is the
energy of the particle, antf(x) is the potential. We note thd — V' is equal to
the kinetic energy of the particle.

In the region where
E > V(x),

the kinetic energy of the particle is positive. Comparing with (7.1), we identify

p(x) with
MWE —V(x).
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The WKB solutions are
p71/2eifpdx and p71/2efifpdx. (750)

Thus the wavefunctions in the classically accessible region areithatory as a
function of .

In the region where
E <V(z),

the kinetic energy of the patrticle is negative, and the momentum of the patrticle is
imaginary. In classical mechanics, the momentum is not allowed to be imaginary.
Thus this region is inaccessible to the classical particle. In quantum mechanics, the
wavefunctiong is exponentially small in this region. The WKB solutions of the
wave equation are

7771/2ef’7dx and 7771/267f’7dx, (7.51)

where
n=XM/V(z)—-E.

The first solution above is exponentially increasing:ascreases, and the second
solution above is exponentially decreasing:ascreases. Since a particle is rarely
observed in the classically inaccessible region, we require the wavefurction
this region to be the solution that decreases to smaller and smaller valugsas
deeper and deeper into the classically inaccessible region.

Let there be a point, at which

E —V(x) = 0.

Note thatz is the point at which the momentum of the particle vanishes. By (7.4),
the WKB approximation fails at;.

Let us study the behavior of the wavefunction negr We shall assume that
V'(z0) is different from zero; hencE — V' (z) is negative at one side of, and pos-
itive at the other side ofy. The pointzg is the dividing point between a classically
accessible region and a classically inaccessible region. In classical mechanics, the
particle cannot move into the region where its kinetic energy is negative, and must
turn back as it arrives aty. That is whyzxg is called a turning point of the wave
equation. As we may expect, the gqualitative behavior of the quantum wavefunc-
tion goes through a transition neay. More precisely, the WKB solution changes
from an oscillatory behavior from one side of the turning point to an exponential
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behavior at the other side of the turning point. However, we cannot continue the
solution from one side of the turning point to the other side of the turning point
with the WKB solutions alone. This is because the WKB approximation fails in a
small neighborhood around the turning pait

Fortunately, another approximation for the solution is available whisrtlose
to zg. In order to make the following discussions appear as simple as possible, we
shall choosey = 0.

Near the turning point that is chosen to be the origin, we have by assumption

[E—V(z2)] = —ax,
with o equal toV’(0). This linear approximation is valid for
2| < 1. (7.52)

We will call the region given by (7.52) the turning region. In the turning region,
the wavefunction is approximately described by
d*¢ 2

the general solution of which is a linear superposition of Airy functions.

We expect the WKB solutions to be good wheis sufficiently far away from
the turning point. How far away from the turning point shoulde in order for the
WKB approximation to be valid? Not very far, as it turns out. Indeed, by (7.4), the
region where the WKB approximation is valid is determined to be

2| > A72/3, (7.54)

where
A? = |a|)2.

SinceA is very large compared to unity,~2/? is very small compared to unity.
Thus the WKB solutions are good even wheris close, although not too close, to
the turning point.

This means that there are valuesaofor which both (7.52) and (7.54) are
fulfilled. These are the values ofsatisfying the inequality

1> |z > A72/3

The regions ofr satisfying the inequality above will be called the overlapping
regions, in which both the WKB solutions and the Airy function solutions are good
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approximations of the wavefunction. Becausmay be either positive or negative,
there are two disjoint overlapping regions. They are

1> 2> A28 (7.55a)

and
1> —z>> A28 (7.55b)

Visually, these two overlapping regions form the two fringes of the turning region.

The existence of these two overlapping regions is crucial. The Airy functions
approximate the wavefunction well throughout the turning region, which overlaps
with the region in which the WKB solutions are good. This fact enables us to
join the WKB solution from one fringe to the other, using the Airy functions to
interpolate the wavefunction through the central part of the turning region where
the WKB approximation fails.

We now demonstrate specifically how this is done. First we consider the case
in which (7.49) has only one turning point. Without loss of generality we shall let
« be positive. (For it is negative, we may make a change of variable, referring to
x as—x.) If ais positive, the kinetic energy of the particle is negative in the region
x > 0. In classical mechanics, this is the region inaccessible to the particle. Thus
we require the wavefunctiofito vanish rapidly ag increases in this region. The
WKB solution in the regiorr > 0 satisfying this requirement is

dwrs(z) = . (7.56)

Incidentally, we may choose the solution to be a constant times the right side of
(7.56), but this affects only the overall normalization of the wavefunction and we
will leave it the way it is.

We use the solution of (7.56) to describe the wavefunction in the regior?.
This WKB solution fails as: gets into the interior of the turning region. To obtain
an approximation of the solution that is good throughout the turning region, we
note that when: is in the turning region, we may approximate (7.49) by (7.53). By
changing the independent variable, we transform eq. (7.53) into the Airy equation

d2
—Yy — = O
dp Yy—py )
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where
p=NAN"g. (7.57)

Thus the two independent solutions of (7.53) are the Airy functions denoted by
Ai(p) andBi(p).

Note that is related tac by a change of scale. Therefore, a region of unit width
in thez variable corresponds to a region of widt®'3 in thep variable. Since\2/3
is a very large number, the region of unit width in the@ariable corresponds to a
region of very large width in the variable. When we study the solution as a
function of p, it is like studying the function with a magnifier, under which the
scale is enlarged.

In terms of the variable, the turning region is given by

ol < A3, (7.58)
which is a very large region, and the overlapping regions are given by
1< p< A3 (7.59a)
and
1< —p < A3, (7.59b)

As we will discuss in the next chapter, the asymptotic formsidffp) when the
magnitude op is large are given by

' e_2p3/2/3
Ai(p) ~ W, p — 00, (7.60)

and

sin [;(—p)g/2 + %}

V(=p)t/

SinceAi(p) vanishes exponentially wheris large and positive, the Airy function
solution that matches the WKB solution (7.56) is

Ai(p) ~ , P — —00. (7.61)

o) = cAi(p), (7.62)

wherec is a constant.
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To determine:, we match the solution (7.62) with the solution (7.56) in the first
overlapping region (7.59a) or, equivalently, (7.55), where both approximations are
good. Now when is small and positive, we have

n(z) ~ Az'/? = A?/3p1/?

and
T 923/2
—/ n(x)dz' ~ — .
0 3

Thus the solution (7.62) and the solution (7.56) have the same functional form in
the overlapping region. They match exactly if we choose

2y

C

Therefore, as we continue the wavefunction (7.56) into the turning region, the
wavefunction becomes

o) = 27 i), (7.63)

Next we continue the wavefunction further into the regior: 0. By (7.61),
the Airy function solution (7.63) ag is negative and large is

2
5 sin {g(—p)?’/z + %]
¢(z) ~ AL/3 (—p)1/A

(7.64)

In the second overlapping region (7.55b) or, equivalently, (7.60b), we have

p(x) ~ A(—z)'/2 = A2/3(—p)1/?

0
/ p(z')dz’ ~

Therefore, the WKB solution far < 0 that matches (7.64) in the second overlap-
ping region is

and

(—p)%/2.

Wl N

2sin [ffp(:v’)d:v' + 77/4}

p(z)

(7.65)
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We point out that as it is being continued into the regiorc 0, the WKB
solution (7.56) forr > 0 turns into neither a multiple of the WKB solution

p71/2eifpdw

nor a multiple of the WKB solution

p71/267ifpdw.
Instead, it turns into a linear superposition of equal magnitude of these two solu-
tions.

With (7.56), (7.63), and (7.65), we have, for the wave equation of one turning
point, an approximate solution covering all valuegoft is easy to generalize the
results above to the case in which the turning point is locateq ether than at
the origin. We simply callX = x — zg, and the pointt = zy corresponds to the
point X = 0. Thus we only need to replacein the results above b¥ . | remind
the reader that if we re-express the results so obtained in terms of the var;ittide
limits of integration given in the formae above should behangedaccordngly.

For example X = 0 corresponds te = z.

We are now ready to treat the wave equation with two turning pointsxj.et
andz; be the two turning points, witly > z;. Let E — V (z) be positive inside
the regionz; < = < zg, and be negative outside the region. In classical physics,
the regionz; < = < xg is the region to which the particle is confined. Thus we
must require the wavefunction to decrease rapidly Eves the regiom; < z <
xg. In particular, we require that the wavefunction vanishcaapproaches plus
infinity or minus infinity.

This is a boundary-value problem with the trivial solution

¢ =0.

This trivial solution satisfies both (7.49) and the conditions of vanishing at plus
infinity and minus infinity.

A nontrivial solution exists only iff takes some special values called eigen-
values. These eigenvalues can be found approximately with the WKB method, as
we shall presently show.

Since it is required to vanish as — —oo, the WKB solution in the region

x < x1 1s chosen to be
1
—/ n(x")dz'

e xr

(7.66)
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Since it is required to vanish as— oo, the WKB solution in the region > xzq is

of the form .
— / n(w’)daj’
e o

owrs(x) =a , (7.67)
n(z)

wherea is a constant. Since the normalization of the wavefunction has been set
by choosing the wavefunction in the region< z; to be precisely the expression
in (7.66), we no longer have any freedom to choeder the wavefunction in the
regionz > xy. The constant will be determined with a calculation.

We shall give the wavefunction only in the region that is inside the interval
xo > x > x1 but is sufficiently far away from the turning pointg andz;. The
WKB approximation holds throughout this region. Since the matching with the
Airy functions has already been performed, we shall be spared the chores of doing
it once again if we are not interested in the wavefunction near the turning points.

We find with the use of (7.65) that the WKB solution in the regigrn> « > x;
that matches with (7.66) is

2sin [f;l p(z')dz’ + 7r/4}

p(z)

We also find with (7.65) that the WKB solution in the regiogn > x > z; that
matches with (7.67) is

2asin [[7° p(a')dz’ + /4]
p(z)

)

where the facton is the same as in (7.67). Since these two solutions are valid in
the same regiom; < = < xg, they are required to be the same. Hence we have

sin [/xp(m’)dm’ + 7r/4} = asin [/xo p(z)dz' + /4] . (7.68)

1

Settingz = z, we get from (7.68)
sin (I +7/4) = a/V?2, (7.69)
where

@
IE/ p(x')dx'.

1
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Differentiating (7.68) with respect to and settinge = xg, we get
cos (I +7/4) = —a/V2. (7.70)
Taking the ratio of (7.69) and (7.70), we get
tan ([ +7/4) = —1.

Therefore,
xg
I:/ p(z)der = (n+1/2)mr,n=0,1,2,---, (7.71)

1
which is known as the Bohr quantization rule giving the approximate energy eigen-
values. Substituting this value éfinto (7.68), we get

a=(-1)".

® Problem for the Reader

With the use of the WKB method, find the quantum energy eigenvalues off the
harmonic oscillator for which

V(z) = %KJ(E2,

wherek is a constant.

€& Solution

The turning points are obtained by setting

1
E - 5/4;332 =0,
which gives
T = —L, Trog = L,
where
[2F
L= —.
K

We have

L
I:)\/ VE — kx?/2dx.
L
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To evaluate the integral above, it is best to scale the variable of integration so that
the limits of integration are-1 and1. Thus we put

X =z/L,
and get
I= )\E\/% / 1 V1 - X2dX.
Since . 1
/ V1-— X2dX = /2,
we find 1

I =\Emy/ i
2K
Therefore, Bohr’s quantization rule says that

E,=V2cA Y n+1/2),n=0,1,2---,

which turns out to be the exact answer.

We note that in classical physics, the energy of a harmonic oscillator can take
any value from zero to infinity. But in quantum mechanics, the energy can only
take the discrete values given above. The lowest of the energy eigenvalues is

1
5\/ 25/)\,

while the other energy eigenvalues are evenly spaced with dista2eg\ apart.

We say that the energy of a harmonic oscillator is quantized. (A more in-depth
discussion of the solution near a turning point will be given in Section E of Chap-
ter 9.)

@ Homework Problems for This Chapter

Solutionsto the Homework Problems can be found at www.lubanpress.com.

1. Show that the Wronskian of} ;. andyy; . given by (7.4) is a constant.

Hint: To calculate the Wronskian @f} 5 andy;; ;5. it is efficient to use
the formula (1.7).
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2. The WKB solutions (7.8) can also be derived by putting: ¢**° and sub-
stituting this expression fay into

d?
d—;é + NP (z)y = 0.

a. Show thatS satisfies the nonlinear second-order differential equation
iAS” — A\2(S")? + NP = 0.

b. Explain why we may drop the tera$” in the equation above and ob-
tain
(8')? = P*=0.
This equation is known as the Hamilton-Jacobi equation. Show that
this approximation is justified as long as

IAS"| < (AS")2.

c. Show that the solutions of the Hamilton-Jacobi equation are
S = + [ Pdz, which will yield the zeroth-order WKB approximation.
Show also that, witl$ given by+ [ Pdz, the inequality given in (b) is
the same as (7.7).

d. Obtain the additional factot//P(x) in the WKB solutions by ex-
pressingS as the perturbation series

S=58+eS1+---

and solving forS;, wheree = A~ ! is a small number.

e. Discuss how to obtain the second-order WKB approximation with this
approach. Compare this method of getting the second-order WKB ap-
proximation with the method given in Section C of this Chapter.

3. Show that whenP(z) has a zero of orden at z(, (7.46) is true if (7.15)
is satisfied, where can be any positive number. Whatff{z) vanishes at
z =0 like e~1/**?
4. Find the zeroth-order and the first-order terms for the solutions of
d4
£y, MU(z)y=0, A>1,
dz?

whereU (x) does not vanish. Consider both the caS¢s) > 0 andU(z) <
0. How do you find the higher-order terms of the solutions?
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5. Solve the following equations in closed forms:

a y' +xmy =0,
b. ¥ + (2? 4+ 3272/16)y
c. y" — (z*—3272/16)y =

0,

6. Obtain the WKB solutions for the equations below. For what positive values
of t are these approximations good? Can you solve them in closed forms?

d*y —et
a.W—i-(l—i-e )y =0, where e < 1.
d2
b. d—tg +e €y =0, where e < 1.
Hint: To obtain the solutions of these equations in closed forms, put

2 _
Zo€t/2
€

T =

The solutions for the equation of (a) af%2i/6(7'), whereas those of
(b) areJy(7) andYy (7).

7. For the example in (6b), make the transformatidon- ¢t and cast the equa-
tion into the form
Y NPTy 0
dT? y="u
What isA and what isP(7")? Show thatP(T") has only one zero. What is
the order of this zero oP (7")?

8. Considery” 4+ 22y = 0 for x of the order of, e < 1. Letz = X and
show that there is no large parameter in the resulting equation. What do you
conclude from this example?

9. Find the WKB solutions of the confluent hypergeometric equation
vy’ +(c—2)y —ay =0,

wherea andc are constants. Determine the valuegdébr which the WKB
solutions are good approximations.
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10. With the use of the WKB method, find the approximate quantum energy
eigenvalues of a particle moving in the potential

V(z) = =kt

wherek is a constant.
Hint: The integral

1
/ V1-—X4dX
0
can be expressed by a Beta function
1
B(p,q) =/ (1 -6 dt (p,q > 0),
0

which is equal to
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Linear Homogeneous PDE, 119-127,
182

logarithmic derivative, 3—7

long-time variable, 431, 440-442

longitudinal component, 146

M

method of stationary phase, 293-309,
315, 317, 324, 332

O

ODE of the first order, 7, 8, 10, 23,
117,119, 123,170, 352, 461
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Index

ordinary point, 216, 218, 219, 227
p

parabolic, 167, 168, 173, 251, 476

parabolic cylinder equation, 196, 237,
252,364,369,370,373,374,
377-379, 382,384, 385,393,
395, 466

particular solution, 12-20, 24, 123,
211,411, 418, 448, 456

path of steepestdescent, 314,315,317,
325-328

pendulum motion, 406-409, 413415,
417,421, 424

perturbation series, 253,254,265, 349,
352,353,409,414,417,418,
422,423,430,436,438,447,
454, 458

Picard’s theorem, 9

point of equilibrium, 407, 424

Poisson’s equation, 146, 476478

Q
quasi-linear PDE, 127-134, 142, 143,
464
R

rapidly varying solution, 352-354,
356,357,360, 362,363,368,
369,371-373,375,377-386,
388, 389, 393, 395, 398, 399

Rayleigh equation, 450

recurrence formula, 203, 204, 208,
212-214,216,218-220, 230,
232,237

regular perturbation, 347-350, 353,
409,412,414,417,422,436,
439-441, 454458

regular singular point, 217-221, 224,
227

489

renormalization group, 453-460, 484
renormalized angular frequency, 417,
423,425, 426, 429, 449
renormalized perturbation, 414-430,
438, 444, 457, 458
Riccati’s equation, 22, 23, 25, 28
Riemann-Lebesgue lemma, 20, 297
roots of the Bessel function, 189
Rutherford’s experiment, 293,297,319

S

saddle point, 304, 309-345
Schrédinger equation, 192—-199, 246,
255, 465, 476478
second-order PDEs, 145-173,175,176
secularterm, 412,415-417,419-423,
427-430,432,434,436-441,
443,446,447,451,452,457,
458, 460

separable equation, 11, 199, 406

separation of variables, 26, 175-199,
201, 210, 477, 478

singular perturbation, 347-403, 414,
438, 444, 482-485

singular point, 9, 201-238, 246-252,
270, 310, 414, 478, 479

slowly varying solution, 353, 354, 357,
368,369,371,372,379,380-
384,394,395, 396, 399, 400,
403

Stirling formula, 288, 343

Stokes line, 329

Stokes phenomenon, 329

Sturm-Liouville problem, 180, 189-
192

T

transverse components, 146
turning point, 254-257,364-385, 389,
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490 Index

391-395, 399, 403
two-scale method, 430—454, 456460,
484

U

unrenormalized perturbation series, 417,
418, 430

V
van der Pol equation, 450, 459
W

wave equation, 122, 158-173, 186—
192,245,255,256,261,305-
307, 364, 465

well posed, 151, 163, 164, 168, 187,
476

WKB method, 239, 247, 251, 253,
261,263,266,267,328, 357,
365, 386,392,402,440,443,
479, 480

WKB solution, 194, 239-244, 246~
250,252,253,255-262, 265,
266,269, 325,365,374, 384,
388-390, 392,400, 402,431

Wronskian, 23, 32, 241, 264

Z
zeroth-order WKB solution, 240, 265






