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Preface

For almost four decades, the Department of Mathematics at MIT has offered a
course called “Advanced Analytic Methods in Science and Engineering.”1 The
purpose of this course is to strengthen the mathematical background of all entering
graduate students, so they may be better prepared for their respective coursework
and specialties.

During the past ten years I’ve been teaching this course I occasionally wrote
notes for the students in my class, intended only to supplement the course’s text-
books. However, at the end of one recent semester several students suggested I
make my materials, which were by that time more than simply “notes,” accessible
to students beyond MIT. This textbook is the result of expansion of and revisions
to that material.

The background of students taking the course is usually fairly diverse. Many of
them lack some of the fundamentals that would prepare them for a graduate math
course. The first five chapters owe their origin to the need for helping such students,
bringing them up to speed. The last five chapters contain more advanced materials.

Teachers and students will thus find that thisbook’s content is flexible enough
to meet the needs of a variety of course structures. For a one-semester course with
emphasis on approximate methods, a teacher may just skim over the first five chap-
ters, leaving the students to read in more detail the parts they need most. Such
a plan would be especially useful for graduate students entering a Ph.D. program
in engineering, science, or applied mathematics. But if this book is adopted for
a course in advanced calculus for undergraduate engineering, science, or applied
mathematics students, then Chapters 1–6 should be emphasized. Chapters 1–5,
plus a few selected later chapters, would be suitable for a graduate course for Mas-
ter’s degree students. In addition, Chapters 3, 4, and 5 may be used as part of the
materials for a course on partial differential equations.

1The course was created by Professor Harvey Greenspan. In 1978 Carl M. Bender and Steven
A. Orszag, two lecturers of this course, authored a textbook,Advanced Mathematical Methods for
Scientists and Engineers (New York, McGraw-Hill, Inc.; reprinted by Springer-Verlag New York,
Inc., 1998).

ix
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x Preface

While most graduate students and upper-class undergraduate students have al-
ready had a full semester of ordinary differential equations, some of them may
need a refresher. Therefore, Chapter 1 includes a very brief summary of ordinary
differential equations. This first chapter is also a convenient place to reintroduce
the elementary but powerful operator method to students. The operator method en-
ables one to more quickly produce the particular solutionsof certain linear ordinary
differential equations as well as partial differential equations, and it also facilitates
many other calculations.2

Chapter 2 is for students who need a quick summary of some of the rele-
vant materials in complex analysis. The important but often neglected subjects
of branch points and branch cuts are included, as well as a short discussion of the
Fourier integral, the Fourier series, and the Laplace transform.

Many of the analytic methods discussed in this book arose from the need to
solve partial differential equations. To help the reader see that connection, Chap-
ters 3, 4, and 5 address partial differential equations.

Because many problems encountered inreal life are often not solvable in a
closed form, it will benefit a student to learn how to do approximations. Chap-
ter 6 presents the methods of series solutions. A few well-known special functions
are used as examples in order to help students gain some familiarity with these
functions while learning the methods of series solutions. I will address the topic
of irregular singular points of an ordinary differential equation, which is not usu-
ally covered in standard textbooks on advanced calculus, such as F. B. Hildebrand,
Advanced Calculus for Applications, Prentice Hall, 1976. The series solution ex-
panded around an irregular singular point of an integral rank is generally divergent
and leads naturally to the concept of asymptotic series, which we’ll cover in sub-
sequent chapters.

Chapter 7 discusses the WKB method. This method gives good approximate
solutions to many linear ordinary differential equations with a large parameter or
those with coefficients that are slowly varying. It is also helpful for yielding so-
lutions near an irregular singular point of a linear differential equation. While the
lowest-order WKB solutions are obtained by solving nonlinear differential equa-
tions, the higher-order WKB approximations are obtained by iterating linear dif-
ferential equations. The last section of this chapter discusses the solutions near a
turning point.

Chapter 8 addresses the Laplace method, the method of stationary phase, and
the saddle point method, which are useful for finding the asymptotic series of

2While this method has been routinely used in field theories, particularly with the derivation of
various Green functions, it has not been adequately covered in most undergraduate textbooks, with
the notable exception ofDifferential Equations by H. T. H. Piaggio, G. Bell and Sons, Ltd., London,
1946 (reprinted in the U.S. by Open Court Publishing Company, LaSalle, Illinois, 1948).
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integrals with a large parameter. In the saddle point method, we deviate from
the rigorous approach of finding the path of steepest descent. Instead, we advocate
finding just a path of descent, as this may somewhat reduce the solution’s chores.

Chapters 9 and 10 address the subjects of regular perturbation and singular
perturbation. Chapter 9 is devoted to the topic of boundary layers, and Chapter 10
covers the topic of small nonlinear oscillations.

Throughout this book I emphasize a central theme rather than peripheral de-
tails. For instance, before discussing how to solve a class of advanced problems,
I relate it to the basics and, when possible, make comparisons with similar but
more elementary problems. As I demonstrate a method to solve a certain class of
problems, I start with a simple example before presenting more difficult examples
to challenge the minds of the students. This process gives students a firmer grasp
of the subject, enabling them to acquire the key idea more easily. Hopefully, ours
will make it possible for them to do mathematics without the need of memorizing
a large number of formulae. In the end I hope that they will know how to approach
a general problem; this is a skill that leaves students better prepared to treat prob-
lems unrelated to the ones given in this book, which they’ll likely encounter in their
future academic or professional lives.

During my classroom lectures, I emphasize interaction with the students. I of-
ten stop lecturing for a few minutes to pose a question and ask everyone to work
through it. I believe this method helps to encourage students to learn in a more thor-
ough way and to absorb concepts more effectively, and this book reflects that inter-
active approach; many “Problems for the Reader” are found throughout the text. To
deepen their understanding of the themes that they’re learning, students are encour-
aged to stop and work on these problemsbefore looking at the solutions that follow.

This book also passes on to learners some of the problem-solving methods
I’ve developed through the years. In particular, parts of Chapters 9 and 10 offer
techniques, which I hope will benefit students and researchers alike. Indeed, I
believe that the renormalization methods given in Chapter 10 are more powerful
than other methods treating problems of non-linear oscillations so far available.

I am indebted to the group of students who encouraged me to publish this
book. Several students have read the field test version of this book and have given
me their very helpful suggestions. They include Michael Demkowicz, Jung Hung
Lee, Robin Prince, and Mindy Teo. Also, Dr. George Johnston read Chapter 7
and gave me very useful comments. I want to thank Professor T. T. Wu of Harvard
University, who introduced me to the saddle point method several decades ago with
a depth I had never fathomed as a graduate student. I thank Mr. David Hu for the
graphs in Chapters 2 and 8. Special thanks are due to Dr. Dionisios Margetis for
graphs in Chapter 9 and the compilation of an extensive bibliography, and to Mr.
Nikos Savva for graphs in Chapters 3 and 9. I also am truly grateful to Professor
John Strain for his inexhaustible efforts in reading through all of the chapters in the
first draft. I am greatly indebted to Dr. H. L. Hu for the many graphs he tirelessly
drew for this book.
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Chapter 2

Complex Analysis

A. Complex Numbers and Complex Variables

In this chapter, I give a short discussion of complex numbers and the theory of a
function of a complex variable.

Before we get to complex numbers, let me first say a few words about real
numbers.

All real numbers have meanings in the real world. Ever since the beginning
of civilization, people have found great use of real positive integers, say 2 and
30, which came up in conversations such as “my neighbor has two pigs, and I
have thirty chickens.” The concept of a negative real integer, say−5, is not quite
as easy, but it became relevant when a person owed another person fivecopper
coins. It was also natural to extend the concept of integers to rational numbers.
For example, when six persons share equally a melon, the number describing the
fraction of melon each of them has is not an integer but the rational number1/6.
When we add, subtract, multiply, or divide integers or rational numbers, the result
is always an integer or a rational number.

But the need for other real numbers came up as mathematicians pondered the
length of the circumference of, say, a circular city wall. To express this length, the
real numberπ must be introduced. This real number is neither an integer nor a
rational number, and is called an irrational number. Another well-known irrational
number found by mathematicians is the constante.

Each of the real numbers, be it positive or negative, rational or irrational, can
be geometrically represented by a point on a straight line. The converse is also
true: a point on a straight line can always be represented by a real number.

When we add, subtract, multiply, or divide two real numbers, the outcome is
always a real number. Thus the root of the linear equation

35

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



36 COMPLEX ANALYSIS

ax+ b = c,

with a, b, andc real numbers, is always a real number. That is to say that if we
make nothing but linear algebraic operations of real numbers, what comes out is
invariably a real number. Thus the real numbers form a closed system under linear
algebraic operations.

But as soon as we get to nonlinear operations, the system of real numbers
alone becomes inadequate. As we all know, there are no real numbers that satisfy
the quadratic equation

x2 = −1.
Thus we use our imagination and denotei as a root of this equation. While we
have gotten to be comfortable with the imaginary numberi, the concept of the
imaginary number was not always easy. Indeed, even Gauss once remarked that
the “true metaphysics” ofi was “hard.”

The number
α = a+ ib,

wherea andb are real numbers, is called a complex number. The numbersa andb
are called the real part and the imaginary part ofα, respectively.

While complex numbers might have once appeared to have no direct relevance
in the real world, people have since found that the use of complex numbers en-
ables them to handle more easily many physical problems in classical physics. For
example, electrical engineers use the imaginary numberi extensively, except that
they call it j. And at the turn of the twentieth century, complex numbers became
almost indispensable with the invention of quantum mechanics.

Let us enter the never-never land of the complex variablez denoted by

z = x+ iy,

wherex andy are real variables and

i2 = −1.

The complex conjugate ofz will be denoted as

z∗ = x− iy.

The variablez can be represented geometrically by the point(x, y) in the Cartesian
two-dimensional plane. In complex analysis, this same two-dimensional plane is
called the complex plane. Thex axis is called the real axis, and they axis is called
the imaginary axis. Letr andθ be the polar coordinates. Then we have
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A. COMPLEX NUMBERS AND COMPLEX VARIABLES 37

x = r cos θ, y = r sin θ (r ≥ 0).

The variableθ is defined modulo an integral of2π. For many functions, the
common way is to defineθ to be either between0 and2π or between−π andπ.
This will be further discussed in Section E of this chapter.

Expressed by the polar coordinates,z is

z = r(cos θ + i sin θ). (2.1)

The Euler’s formula says

eiθ = cos θ + i sin θ. (2.2)

Thus we have

z = reiθ. (2.3)

This is known as the polar form ofz. The quantityr =
√
x2 + y2 is called the

absolute value or the magnitude ofz, which is also expressed as|z|. The quantity
θ = tan−1 y/x is called the argument or the phase ofz.

Incidentally, (2.2) shows thatcos θ andsin θ are respectively the real part and
the imaginary part ofeiθ, provided thatθ is real. Note that the absolute value ofeiθ

is √
cos2 θ + sin2 θ = 1.

If we setθ = 2nπ in (2.2), wheren is an integer, we get

ei2nπ = 1.

This result can be understood geometrically. The complex numberei2nπ has the
phase2nπ, and is hence located on the positive real axis. This complex number has
the magnitude unity, and is hence one unit distance away from the origin. Therefore
it is equal to1.

Settingθ in (2.2) to(2n+ 1), wheren is an integer, we get

ei(2n+1)π = −1.

Geometrically,ei(2n+1)π has the magnitude unity and the phase(2n+1)π, and
is hence located at the negative real axis one unit distance away from the origin.
Therefore it is equal to−1.
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38 COMPLEX ANALYSIS

Settingn = 1, we have

eiπ = −1.

As we have mentioned,e andπ are irrational numbers and there is no simple
formula connecting these two numbers. Yet after we introduce the imaginary num-
beri, which is a figment of our imagination, these three numbers are neatly joined
together.

Since the argument ofz is defined modulo an integral multiple of2π, the polar
form (2.3) can be written as

z = rei(θ+2nπ), (2.4)

wheren is an integer. Indeed, we have just shown that the factorei2nπ in (2.4) is
equal to unity and hence (2.4) agrees with (2.3).

h Problem for the Reader

Where is the complex number(1 + i) in the complex plane? What are the phase
and the magnitude of(1 + i)?

F Solution

The Cartesian coordinates of the complex number(1+ i) are(x, y) = (1, 1). Thus
we put a dot on the point(1, 1) in thexy-plane to represent this complex number
geometrically.

Inspecting the location of this dot, we find that the phase and the magnitude of
1 + i areπ/4 and

√
2, respectively.

The polar form is particularly convenient to use for carrying out the operations
of multiplication or division of complex numbers. Let

z1 = r1e
iθ1 , z2 = r2e

iθ2 ,

then

z1z2 = r1r2e
i(θ1+θ2), z1/z2 = (r1/r2)e

i(θ1−θ2).

The formulae above say that the absolute value of the product (ratio) of two
complex numbers is equal to the product (ratio) of the absolute values of these
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A. COMPLEX NUMBERS AND COMPLEX VARIABLES 39

complex numbers, and the phase of the product (ratio) of two complex numbers is
equal to the sum (difference) of the phases of these complex numbers. These oper-
ations would have been a little more cumbersome to carry out if we had expressed
the complex numbers with the Cartesian form.

Needless to say, using the polar form to do multiplication and division of more
factors of complex numbers is even more laborsaving. In particular, we have

zm = rmeimθ = rm(cosmθ + i sinmθ).

Settingr = 1, we obtain from the formula above that

(cos θ + i sinθ)m = cosmθ + i sinmθ.

This single identity contains a number of identities we are familiar with. For
example, choosingm to be2, we get from this identity

cos2 θ − sin2 θ + 2i cos θ sin θ = cos 2θ + i sin 2θ.

By equating the real parts as well as the imaginary parts of the two sides of the
equation above, we get the familiar identities

cos 2θ = cos2 θ − sin2 θ

and
sin 2θ = 2 cos θ sin θ,

which expresscos 2θ andsin 2θ as quadratic forms ofcos θ andsin θ.

h Problem for the Reader

Find the roots of the equation
ee
z
= 1.

F Solution

Let us call
ω ≡ ez ;
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40 COMPLEX ANALYSIS

then the equation under consideration is

eω = 1.

This problem is easily solved if we write the equation as

eω = e2nπi,

wheren is any integer, and equate the exponents of the two sides of the equation.
We get

ω = 2nπi,

or
ez = 2nπi,

wheren is any integer. We shall solve the equation above forz. If n = 0, the
equation above is

ez = 0.

Since|ez| = ex, which is never equal to zero unlessx is equal to minus infinity,
ez = 0 has no finite root.

If n > 0, the equation above is

ez = eln(2nπ)eiπ/2e2mπi.

Equating the exponents of the two sides, we get

z = ln(2nπ) + iπ(1/2+ 2m),

wherem is any integer.
Similarly, if n < 0, we get

z = ln(2 |n| π) + iπ(−1/2+ 2m).

There are a doubly infinite number of solutions for equationee
z
= 1.

h Problem for the Reader

Find the phase and the magnitude of the power functionza, wherea is a number
that is not an integer.
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B. ANALYTIC FUNCTIONS 41

F Solution

We again use the polar form (2.4) forz and get

za =
[
rei(θ+2nπ)

]a
= raei(θ+2nπ)a, (n = 0,±1,±2, · · ·).

The identity above shows that the magnitude ofza is ra, and the phase ofza is
equal to(θ + 2nπ)a, which has infinitely many values. Whilen is an integer,na
is not necessarily an integer. Thusei2nπa is not necessarily equal to unity andza

generally has infinitely many values.
Exceptions occur whena is a rational number. Consider for examplez1/2.

Settinga = 1/2 andz = 1 in the expression above, we get

11/2 = einπ = 1, n even,

= −1, n odd,

which is the familiar result that the equationz2 = 1, or z = 11/2, has two roots:1
and−1.

Similarly, settinga = 1/N andz = 1, we find that11/N is equal to

e2nπi/N , n = 0, 1 · · · (N − 1),

with the other integral values ofn giving no new roots. This corresponds to the
familiar result that the equation

ωN = 1

hasN roots.

B. Analytic Functions

Consider the limit

lim
∆z→0

∆f

∆z
(2.5)

for a complex-value functionf(z), where

∆f = f(z +∆z)− f(z).
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42 COMPLEX ANALYSIS

The limit of the ratio above, if it exists, is called the derivative off(z), and is
denoted asf ′(z).

The functionf(z) is said to be analytic atz0 if f ′(z) exists in a neighborhood
of z0.The functionf(z) is said to be analytic in a regionR in the complexz-plane
if f ′(z) exists for every pointz inR.

While (2.5) resembles the definition of the derivative of a function of a real
variablex

f ′(x) = lim
∆x→0

∆f

∆x
,

there is a substantive difference between them. The point is that∆z has both a real
part and an imaginary part, i.e.,∆z = ∆x + i∆y. Therefore, iff(z) is to have a
derivative, the limit of (2.5) is required to exist for any∆x and∆y, as long as both
of them go to zero. There is no restriction, for example, on the ratio of∆y/∆x,
which may take any value. This is a strong condition on the functionf(z).

A strong condition has strong consequences. Let

f(z) = u(x, y) + iv(x, y),

whereu andv are the real part and the imaginary part off(z), respectively. Then
the expression in (2.5) is

lim
∆z→0

∆u+ i∆v

∆x+ i∆y
, (2.6)

where

∆u = u(x+∆x, y +∆y)− u(x, y),
and similarly for∆v.

We first consider the limit of (2.6) with∆z real, i.e.,∆z = ∆x. Then the limit
of (2.6) is equal to

lim
∆x→0

∆u+ i∆v

∆x

∣∣∣∣
y fixed

= ux + ivx, (2.7)

whereux, for example, is the partial derivative ofu with respect tox. Next we
consider the limit (2.6) with∆z purely imaginary, i.e.,∆z = i∆y. We have

lim
∆y→0

∆u+ i∆v

i∆y

∣∣∣∣
x fixed

=
(uy + ivy)

i
. (2.8)
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B. ANALYTIC FUNCTIONS 43

If f(z) has a derivative, the expressions of (2.7) and (2.8) are, by definition, the
same. This requires that

ux = vy, uy = −vx. (2.9)

The equations in (2.9) are known as the Cauchy-Riemann equations. The real part
and the imaginary part of an analytic function must satisfy these equations.

While we have only required that the limit of (2.5) is the same with∆z either
purely real or purely imaginary, it is straightforward to prove that this limit is the
same for any complex∆z when the Cauchy-Riemann equations are obeyed. (See
homework problem 1 of this chapter.)

Differentiating the first Cauchy-Riemann equation with respect tox, we get

uxx = vyx.

Differentiating the second Cauchy-Riemann equation with respect toy, we get

uyy = −vxy.

Adding these two equations together, we get

uxx + uyy = 0.

The equation above is called the Laplace equation. We have shown that the real
part of an analytic function must satisfy the Laplace equation.

We may similarly prove thatv, the imaginary part of an analytic function, also
satisfies the Laplace equation.

The Laplace equation is an important equation in physical sciences. From what
we have just discussed, one may find the solution of a two-dimensional Laplace
equation satisfying certain boundary conditionsby looking for the analytic function
the real part (or the imaginary part) of which satisfies these boundary conditions.

A function satisfying the Laplace equation is said to be harmonic. Thus the
real part and the imaginary part of an analytic function are always harmonic. We
call u andv the harmonic conjugate of each other.

h Problem for the Reader

Find the real part and the imaginary part ofez and show that they satisfy the
Cauchy-Riemann equations.
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F Solution

We have

ez = ex+iy = exeiy = u(x, y) + iv(x, y).

Using Euler’s formula foreiy, we get

u(x, y) = ex cos y, v(x, y) = ex sin y.

Thus

ux = e
x cos y, uy = −ex sin y,

vx = e
x sin y, vy = e

x cos y.

We see thatu andv satisfy the Cauchy-Riemann equations for all values ofz. Thus
the functionez is analytic for all values ofz. Incidentally, a function that is analytic
at all points in the finite complex plane is called an entire function ofz.

h Problem for the Reader

Is the functionf(z) = zz∗ analytic?

F Solution

For the functionzz∗,

u(x, y) = x2 + y2, v(x, y) = 0.

We have

ux = 2x, uy = 2y, vx = vy = 0.

Thus the Cauchy-Riemann equations are not satisfied except at the origin, which
is but a point, not a region. Since the derivative of the function exists for no neigh-
borhood of the origin, it is not analytic, even at the origin.

An intuitive way to understand whyzz∗ is not analytic is to think of this func-
tion as dependent onz∗.We shall show that an analytic function is independent
of z∗.

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



B. ANALYTIC FUNCTIONS 45

To see this, let us first mention that we usually think ofz∗ to be dependent on
z, and a function ofz andz∗ is just a function ofz. Indeed,

∆z = ∆x+ i∆y, ∆z∗ = ∆x− i∆y.

Since the magnitude of∆z is equal to that of∆z∗, we conclude that if∆z is
nonzero,∆z∗ is nonzero, which makes it impossible to varyz when keepingz∗
fixed.

But this is true because we have implicitly accepted the premise that both∆x
and∆y are real. As a matter of fact, that∆z∗ = 0 implies

∆x = i∆y.

Therefore, if∆x and∆y are allowed to be complex, it is possible to have∆z be
nonzero with∆z∗ equal to zero. For example, when∆y is real,∆z∗ is zero if∆x
is equal to the imaginary numberi∆y. With this provision we may regardz andz∗
as independent variables.

We have

x =
z + z∗

2
, y =

z − z∗
2i
.

A function of the two variablesx andy can now be considered as a function ofz
andz∗. The partial differentiation with respect toz can be defined with the chain
rule of partial differentiation. We have

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=
1

2

(
∂

∂x
− i ∂
∂y

)
.

Similarly,
∂

∂z∗
=
1

2

(
∂

∂x
+ i
∂

∂y

)
.

Let us now get back to the point that prompted this discussion. Letf be a complex-
valued function ofx andy. Let the real part and the imaginary part off be denoted
asu andv, respectively. We have

∂

∂z∗
f =

1

2

(
∂

∂x
+ i
∂

∂y

)
(u+ iv) =

ux − vy + i(uy + vx)
2

.

If f is an analytic function, thenu andv satisfy the Cauchy-Riemann equations
and hence

∂

∂z∗
f = 0.

This says that an analytic function is independent ofz∗.
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h Problem for the Reader

Show that
∂2

∂x2
+
∂2

∂y2
= 4
∂

∂z

∂

∂z∗
.

F Solution

4
∂

∂z

∂

∂z∗
=

(
∂

∂x
− i ∂
∂y

)(
∂

∂x
+ i
∂

∂y

)
=

(
∂2

∂x2
+
∂2

∂y2

)
.

It follows that the Laplace equation can be written as∂
z

∂z∂z∗u = 0, and the
solution of the Laplace equation is the sum of a function ofz and a function ofz∗.

Next, we give a few examples of functions that are analytic. The power func-
tion zn with n an integer is analytic. While this result may very well be expected,
I will give it a proof below. We have, by expressing(z +∆z)n with the binomial
expansion,

lim
∆z→0

(z +∆z)n − zn
∆z

= lim
∆z→0

nzn−1∆z + · · ·
∆z

,

where the terms unexhibited are at least as small as the square of∆z. The limit
above exists for all∆z, and we get

d

dz
zn = nzn−1,

which is the same formula we learned in calculus. Thus the derivative of the power
functionzn exists for all values ofz. Therefore,zn is analytic for all values ofz,
or is an entire function ofz.

Since the power functionzn is analytic, so is the linear superposition of a finite
number of power functions. Indeed, so is the sum of an infinite number of power
functions, as long as this sum is absolutely convergent. Conversely, we shall show
in Section C that a function analytic at a pointz0 always has a convergent Taylor
series expansion aroundz0.

We have learned in calculus that the Maclaurin series forsinx is

sinx = x− x3/(3!) + x5/(5!) + · · · .
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Let us replacex in the series above byz and definesin z to be this series, i.e.,

sin z ≡ z − z3/(3!) + z5/(5!) + · · · . (2.10)

Similarly, we define

cos z = 1− z2/2! + z4/4! + · · · . (2.11)

We shall use the ratio test to prove that the series in (2.11) is absolutely convergent
for all values ofz. Let thenth term in the series of (2.11) bean. Then the ratio

an
an−1

= − z2

(2n− 2)(2n− 3)
vanishes in the limitn→∞ for all values ofz. Since the ratio of thenth term and
the(n− 1)th term vanishes asn→∞ for all z, the ratio test asserts that the series
of (2.11) converges absolutely for all values ofz. Therefore,cos z defined by (2.11)
is meaningful for allz. Being the same ascosx whenz = x, cos z is called the
analytic continuation ofcos x into the complex plane. The analytic continuation of
a function from the real line into the complex plane is unique. (For more general
considerations of analytic continuation of a function, see homework problem 9.) In
the case ofcos z, this means that the function defined in (2.11) is the only function
possible that is analytic everywhere and agrees withcosx whenz = x.

Similarly, the series in (2.10) is absolutely convergent for allz. Therefore,
sin z defined by (2.10) is the unique analytic continuation ofsinx into the com-
plex plane.

C. The Cauchy Integral Theorem

The contour integral

I =

∫
c

f(z)dz,

wherec is a contour in the complex plane, is defined to be∫
c

(u+ iv)(dx+ idy) =

∫
c

(udx− vdy) + i
∫
c

(udy + vdx). (2.12)

We note that the two integrals on the right side of (2.12) are line integrals in the
two-dimensional plane, which we already encountered in calculus.
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An example of a line integral is the work done by a force. As we know,
the work done by moving a particle from(x, y) to (x + ∆x, y + ∆y) against a
force −→

F =M(x, y)
−→
i +N (x, y)

−→
j

is equal to the scalarproduct of the force withthe displacement vector

∆x
−→
i +∆y

−→
j .

Thus the work done is

M(x, y)∆x+N (x, y)∆y.

Therefore, ifA andB are two points in thexy-plane, the work done in moving
a particle fromA toB along a pathc against the force is equal to the line integral∫

c

(Mdx+Ndy).

We also recall that
−→
F is known as a conservative force if the curl of

−→
F vanishes.

Equivalently,
−→
F is a conservative force if there exists a potentialV such that

−→
F = −−→∇V.

If
−→
F is conservative, the work done in moving a particle from one point to another

depends only on the difference of the values of the potential at these two points,
and is independent of the path. To say this more precisely, let the potentialV exist
in a regionR in the two-dimensional plane; then∫

c1

(Mdx+Ndy) =

∫
c2

(Mdx+Ndy),

provided thatc1 andc2 are two curves with the same endpoints and both lie inside
R.

If the potentialV exists, we have

M = −Vx, N = −Vy,

and hence
My = Nx. (2.13)

The converse is indeed also true: if (2.13) holds in a regionR, then the force is the
gradient of a potential.

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



C. THE CAUCHY INTEGRAL THEOREM 49

z0

z1c1

c2

Figure 2.1

Now for the first line integral in (2.12),M isu andN is−v. Thus the condition
(2.13) for this line integral is the second Cauchy-Riemann equation. For the second
line integral in (2.12),M is v andN is u . Thus the condition (2.13) for this line
integral is the first Cauchy-Riemann equation. The contour integralI in (2.12) is
therefore path independent iff(z) is analytic. More precisely, letc1 andc2 be two
curves, both join the lower endpointz0 to the upper endpointz1 in the complex
z-plane, and both lie inside the regionR wheref(z) is analytic. Then we have∫

c1

f(z)dz =

∫
c2

f(z)dz. (2.14)

Equation (2.14) tells us that we may deform the contourc1 to the contourc2, where
c1 andc2 have the same endpoints, provided thatf(z) is analytic in the region lying
betweenc1 andc2.

The contoursc1 andc2 in (2.14) are open contours. We shall extend (2.14) to
closed contours. Letc andc′ be closed contours of the same sense of direction,
i.e., either both counterclockwise or both clockwise, with no singularities off(z)
lying betweenc andc′. We choose a pointz0 on c and think of the closed contour
c as a contour joining the pointz0 to itself. Let us draw a line joiningz0 to a
point z′0 on c′, forming a bridge betweenc and c′. Then we may think ofc′ as
another contour joiningz0 to itself. This is becausec′ is the contour that begins at
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o

 'o

'

z

z

c
c

Figure 2.2

z0, crosses the bridge toz′0, and followsc′ to return toz′0, then crosses the bridge
in the reverse direction to finally come back toz0. As the bridge is crossed twice
in opposite directions, the two contour integrals associated with the contour of the
bridge cancel each other. Therefore,c′ can also be considered as a closed contour
joining z0 to itself, and by (2.14) we have∮

c

f(z)dz =

∮
c′
f(z)dz, (2.15)

where the symbol
∮

denotes an integration over a closed contour.
Equation (2.15) says that the contourc can be deformed intoc′ provided that

f(z) is analytic in the region lying betweenc andc′.
Let us go fromz0 to z1 along contourc1 in Figure 2.1, then go fromz1 back

to z0 along−c2, which isc2 in the reverse direction. The contourc = c1 − c2 is a
closed contour. Thus (2.14) can be written as∮

c

f(z)dz = 0 (2.16)

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



C. THE CAUCHY INTEGRAL THEOREM 51

provided thatf(z) is analytic in a regionR andc is a closed contourc insideR.
Equation (2.16) is the Cauchy integral theorem.

Next, we consider the integral

In =

∮
c

dz

(z − z0)n ,

wherec is a closed contour in the counterclockwise direction andn is a positive
integer. The integrand blows up atz = z0. We say that the integrand has a singu-
larity at z0. More generally, if a single-value functionf(z) is not analytic at point
z0, then we say thatf(z) has a singularity atz0.

If c does not enclosez0, In vanishes by Cauchy’s integral theorem. But ifc
enclosesz0, as is illustrated in Figure 2.3, we may deform the contour into the
circleCR without crossing any singularity of the integrand, whereCR is the circle,
the center of which isz0, and the radius of which isR.

Now a pointz onCR satisfies

|z − z0| = R,

and hence the polar form ofz − z0 is

z − z0 = eiθR.

Thus we get
dz = ieiθRdθ.

Therefore, we have

In =
i

Rn−1

∫ 2π
0

ei(1−n)θdθ.

The integral above is easily calculated. Indeed, we have∫ 2π
0
ei(1−n)θdθ = 2π, n = 1,

= 0, n �= 1.

Thus we conclude that, ifz0 is inside the closed counterclockwise contourc, we
have

In = 2πi, n = 1,

= 0, n �= 1. (2.17)
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R
o

c

CR

z

Figure 2.3

Equation (2.17) enables us to derive the Cauchy integral formula, which says that
if f(z) is analytic in the regionR, and ifz is an interior point ofR, then we have

f(z) =
1

2πi

∮
c

f(z′)
z′ − z dz

′, (2.18)

provided thatc is a closed curve enclosingz once in the counterclockwise direction
and lying insideR. To prove this, we deform the contourc into the circlecε with
center atz and radiusε. This is allowed, as the integrand of (2.18) is analytic in the
region lying betweenc andcε. As we makeε approach zero,z′ approachesz and
the integral approaches

f(z)

2πi

∮
cε

1

z′ − z dz
′.

By (2.17), Cauchy’s integral formula is proved.
Differentiating the Cauchy integral formula with respect toz, we obtain the

derivative off as

f ′(z) =
1

2πi

∮
c

f(z′)
(z′ − z)2dz

′.
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Cε Z

Z

ε

'

C

Figure 2.4

By differentiating the Cauchy integral formulan more times, we get

f (n)(z) =
n!

2πi

∮
c

f(z′)
(z′ − z)n+1 dz

′.

Thus if a function of a complex variablez is analytic, it has derivatives of all
orders. But by definition, a function of a complex variable is analytic if it has the
first derivative; thus a function of a complex variable has derivatives to all orders if
it has the derivative of the first order.

This may seem surprising to readers who have learned in calculus that if a
function of a real variablex has a first derivative, it does not necessarily have
a second derivative, not to mention even higher-order derivatives. The seeming
contradiction is resolved by the fact that the existence of the derivative of a function
of a complex variable requires a stronger condition than that of a function of a real
variable.

We may now prove that a functionf(z) analytic atz0 has the Taylor series
expansion
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f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n, (2.19)

wherez lies in a neighborhood ofz0 to be specified later. To prove (2.19), we
choosec in (2.18) to beCR, the circle with center atz0 and radiusR, whereR is
sufficiently large so thatc enclosesz. Now if z′ is a point onCR,

|z′ − z0| = R.

Also, sincez is insideCR,

Y

X

CR

R

Z

Zo

Figure 2.5

|z − z0| < R.
Thus we have

|z − z0|/|z′ − z0| < 1.
Now
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(z′ − z)−1 = [
(z′ − z0)− (z − z0)

]−1
= (z′ − z0)−1

(
1− z − z0
z′ − z0

)−1
.

As we know,(1− ω)−1 is equal to the convergent series

∞∑
n=0

ωn

provided that|ω| < 1. Identifyingω with (z − z0)/(z′ − z0), we have,

(z′ − z)−1 = (z′ − z0)−1
∞∑
n=0

(
z − z0
z′ − z0

)n
.

Substituting the expression above into (2.18), we obtain the Taylor series expansion
(2.19).

The contourCR is a circle inside whichf(z) is analytic. ThusCR is not
allowed to enclose any singularity off(z). Let z1 be the singularity off(z) closest
to z0; then the largest value ofR possible is|z0 − z1| . Therefore, the radius of
convergence of the Taylor series (2.19) is|z0 − z1|.

As an example, sincesinnπ vanishes for any integral valuen, the function
z(sinπz)−1 has singularities atz = n, wheren is any integer not equal to zero.
The pointz = 0 is not a singularity ofz(sinπz)−1 because the numerator of this
function vanishes atz = 0. Indeed, by l’Hopital’s rule,z(sinπz)−1 is equal to
π−1 at z = 0. Let us consider the Maclaurin series forz(sinπz)−1. Since the
singularities ofz(sinπz)−1 closest to the origin arez = ±1, this series converges
in a circle with center at the origin and radius unity.

As another example, we have shown that the functionez is an entire function.
Therefore, we know that its Maclaurin series

ez = 1+
z

1!
+
z2

2!
+ · · · (2.20)

converges for all finite values ofz. This may also be directly verified with the use
of the ratio test.

h Problem for the Reader

Show that
sin(iz) = i sinh z, cos(iz) = cosh z.
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F Solution

From the Maclaurin series (2.10) forsin z we get

sin(iz) = i
[
z + z3/(3!) + z5/(5!) + · · ·] = i sinh z.

In a similar way, we get

cos(iz) = 1 + z2/2! + z4/4! + · · ·= cosh z.

From (2.10), (2.11), and (2.20), we find

eiz = cos z + i sin z, (2.21)

which is Euler’s formula for a complex argument. Replacingz in (2.21) by−z, we
have

e−iz = cos z − i sinz.
Therefore,

cos z =
eiz + e−iz

2
, (2.22)

and

sin z =
eiz − e−iz
2i

. (2.23)

Whenz = x, (2.21), (2.22), and (2.23) are identities already established in calcu-
lus. We now see that they also hold whenz is complex.

As we have mentioned, an equality between analytic functions valid for real
z = x is invariably valid whenz is complex. This is a result of the uniqueness of
analytic continuation. But a nonanalytic relation that holds whenz = x often does
not hold whenz is complex. For example, the inequality

−1 ≤ sinx ≤ 1

does not hold whenx is replaced by the complex variablez. Indeed, ifz is complex,
sin z is not even a real number. Note also thatsin z is not the imaginary part ofeiz

whenz is complex, nor iscos z the real part ofeiz whenz is complex.
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If f(z) is not analytic atz0, it has no derivative atz0 and naturally has no
Taylor series expansion aroundz0. But it may have another kind of series expansion
aroundz0. As an example, consider the functionf(z) = e1/z, which is not analytic
at z = 0. Nevertheless, we have by (2.20) that

e1/z = 1 +
1

z
+
1

2!z2
+ · · · . (2.24)

The series above is not a Taylor series, as it is not a sum of positive power functions.
Instead, it is an example of a Laurent series defined by ((2.25)) below. Since the
series forez converges for all finitez, the Laurent series fore1/z converges for all
z �= 0.

More generally, an analytic function has a Laurent series expansion around
an isolated singularity, which we shall define as follows. Letz0 be a singularity of
f(z), andz1 be the singularity off(z) closest toz0. If |z0−z1| is not equal to zero,
thenz0 is called an isolated singularity off(z). Not all singularities of an analytic
function are isolated. For example, the singularites of the function1/ sin(π/z) are
located atz = 1/n, n = 0,±1,±2, · · · , wheresin(π/z) vanishes. Since1/n for
n arbitrarily large is arbitrarily close to the origin, the pointz = 0 is not an isolated
singularity of1/ sin(π/z).

If z0 is an isolated singularityoff(z), we may prove with the use of the Cauchy
integral formula thatf(z) has the Laurent series expansion

f(z) =

∞∑
n=−∞

an(z − z0)n, (2.25)

which contains not only positive powers of(z − z0), but also negative powers of
(z − z0).

The series (2.25) is convergent at every point, with the exception of the point
z0, inside the circle with the center atz0 and with the radius|z0− z1| , wherez1 is
the singularity off(z) closest toz0. This can again be proven with the use of the
Cauchy integral formula (2.18). (See homework problem 12.)

We note that the difference between a Taylor series and a Laurent series is that
the latter has negative power functions(z − z0)−m, wherem > 0. These power
functions blow up atz = z0. Indeed, the largerm is, the faster the power function
blows up asz approachesz0. If the term in the series that blows up the fastest is a
(z − z0)−N term, then we say that the function has a pole of orderN atz0.

If the Laurent series off(z) has nonvanishing(z − z0)−m terms of arbitrarily
largem, f(z) is said to have an essential singularity atz0. An example is the series
of (2.24), which has an essential singularity at the origin.
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Let us integrate the Laurent series over a closed contourc that enclosesz0 but
no other singularities off(z). Let the direction ofc be counterclockwise. By
(2.15), all terms in this series except the term

a−1/(z − z0)

are integrated to zero. Thus we get∮
cf(z)dz = 2πia−1. (2.26)

This is known as the Cauchy residue theorem. The coefficienta−1 is known to
be the residue off(z) at z0, which we shall denote as Res(z0). If the contour is
clockwise, the integral will be equal to the negative of2πi times the residue.

This formula is one of the most useful formulae in complex analysis. It tells
us that the value of an integral over a closed contour can be obtained by simply
evaluating the residue of its integrand.

If the contourc encloses more than one singularity off(z), we replace the right
side of (2.26) by the sum of residues off(z) at these singularities. (Why?)

Before we close this section, let us show how to evaluate efficiently the residue
of f(z) at z0 where the function has a pole of the first order, which is called a
simple pole. If the singularity off(z) atz0 is a simple pole,

f(z) =
a−1
z − z0 + a0 + a1(z − z0) + · · · .

Thus the residue off(z) atz0 is equal to

Res(z0) = lim
z→z0
(z − z0)f(z). (2.27a)

As an example, let us calculate the residue ofez/sin z atz = 0. We have by (2.27a)
that

Res(0) = lim
z→0

zez

sin z
.

We see that both the numerator and the denominator vanish asz → 0; thus we
apply l’Hopital’s rule and get

Res(0) = lim
z→−0

ez + zez

cos z
.

Sincezez vanishes asz → 0, we have

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



D. EVALUATION OF REAL INTEGRALS 59

Res(0) = lim
z→0

ez

cos z
= 1.

Note thatez/cos z is obtained fromez/sin z by replacing the denominator of the
latter function with the derivative of its denominator. Thus we may dispense with
the formula (2.27a) and calculate the residue by differentiating the denominator.

More generally, letf(z) = g(z)/h(z), whereg(z) andh(z) are analytic atz0.
If h(z) has a simple zero atz0, thenf(z) has a simple pole atz0. By (2.27a), we
obtain with the use of l’Hopital’s rule that the residue off(z) at z0 is

Res(z0) =
g(z0)

h′(z0)
. (2.27b)

If f(z) has a double pole atz0, the Laurent series expansion off(z) in the
neighborhood ofz0 is

f(z) =
a−2

(z − z0)2 +
a−1
z − z0 + a0 + a1(z − z0) + · · · .

In this case, the limit on the right side of (2.27a) is equal to infinity, not the residue
of f(z) atz0. To eliminate the singularity atz0, we multiplyf(z) by (z− z0)2 and
get

(z − z0)2f(z) = a−2 + a−1(z − z0) + a0(z − z0)2 + · · · .
The expression above is finite in the limitz → z0, but this limit is equal toa−2,
nota−1. To obtaina−1, we differentiate the expression above and then setz = z0.
We get

a−1 = lim
z→z0

d

dz

[
(z − z0)2f(z)

]
.

D. Evaluation of Real Integrals

The Cauchy residue theorem provides us with a tool to evaluate a number of inte-
grals in the real world, the integrands of which are functions of a real variable and
the integration is over real values of the variable. Some of these integrations are dif-
ficult to carry out in closed form with the methods provided by calculus. We shall
show that, by going into the never-never land of the complex plane, sometimes we
can find the closed forms of these integrals.

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



60 COMPLEX ANALYSIS

As an example, let us consider the integral

I =

∫ ∞
−∞

dx

1 + x2
. (2.28)

While this integral can be evaluated with calculus, we shall use it as an example to
demonstrate how to do real integrals with contour integration.

We regard this integral as a contour integral over the real axis of the complex
plane. But we cannot as yet apply the Cauchy residue theorem to it, as the real axis
is not a closed contour. Let us think of the real axis as the contour from−R toR
along the real axis, in the limit asR approaches infinity. We add to this contour the
counterclockwise semicircle in the upper half-plane with the origin as the center
andR the radius. (See Figure 2.6.) Now we get a closed contour which we shall
call c. As we shall see, the integral over the semicircle vanishes in the limit of
R → ∞. Thus the integral of (2.28) is equal to the integral overc. Sincec is a
closed contour we may apply the Cauchy residue theorem to the integral. The only
singularity of the integrand enclosed byc is z = i. Thus we have by (2.27b),

I = 2πiRes(i) = 2πi
1

2i
= π.

To finish the argument let us show that the contribution of the semicircle is zero
in the limitR→∞. If z is a point on the semicircle,

z = eiθR, 0 ≤ θ ≤ π.

WhenR is very large, the integrand1/(1+ z2) is approximately equal to1/z2, the
magnitude of which is1/R2. We also have

dz = ieiθRdθ. (2.29)

Thus we have ∫
CR

dz

1 + z2
≈

∫ π
0

ieθRdθ

R2e2iθ
,

whereCR is the semicircle in the upper half-plane. In the limitR → ∞, the
integral above vanishes, as there are two factors ofR in the denominator of the
integrand and only one factor ofR in the numerator of the integrand.

We may also close the contour of the integral in (2.28) by adding to it the
semicircle in the lower half-plane in the clockwise direction. The only singularity
enclosed by this contour is the one atz = −i. Thus we have
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R
X

i

Y

−R

Figure 2.6

I = −2πi Res(−i) = −2πi 1−2i = π,
which is the same answer. Note that the first minus sign above is due to the fact
that the closed contour is clockwise.

One of the first things we do in applying the Cauchy residue theorem is to make
sure that the contour is a closed one. If the contour is not closed, try to close it if
possible. The second step is to locate the singularities of the integrand enclosed by
the contour, and calculate the residues of the integrand ateach of the singularities.

h Problem for the Reader

Evaluate the integral

I =

∫ ∞
−∞

dx

(x− i)(x− 2i)(x− 3i)(x− 4i) .

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



62 COMPLEX ANALYSIS

F Solution

We may close the contour upstairs by adding to the contour of integration the semi-
circle in the upper half-plane. This is justified, as the contribution of the semicircle
of radiusR is of the order of

R/R4,

where the numerator factorR comes fromdz given by (2.29) and the factorR4 is
the order of the denominator of the integrand whenR is large. Thus the contri-
bution of the semicircle vanishes asR → ∞. With the semicircle included, the
contour is closed and encloses the four singularities of the integrand located ati,
2i, 3i, and4i. Therefore, we may obtain the value ofI by adding up the residues
at these singularities.

It is far simpler, however, to evaluate this integral by closing the contour down-
stairs. The contribution from the semicircle in the lower half-plane vanishes as
before. Since the integrand has no singularities in the lower half-plane, we get

I = 0.

For the integral

I =

∫ ∞
−∞

dx

(x+ i)(x− 2i)(x− 3i)(x− 4i) ,

the integrand of which has three poles in the upper half-plane and one pole in the
lower half-plane, it is easier if we close the contour downstairs. This is because if
we do so, we need to evaluate only the residue atz = −i.

For other integrals, there is no way to close the contour before we make some
changes. Consider

I =

∫ ∞
−∞

cos x

1 + x2
dx. (2.30)

We emphasize that it is impossible to close the contour for the integral of (2.30)
either upstairs or downstairs. The culprit is the factorcos x in the numerator of the
integrand. Whilecosx is of finite values between−1 and1, no matter how large
x is, cos z is very large whenz is complex and large. To see this, we have from
(2.22) that

cos z =
eix−y + e−ix+y

2
.

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



D. EVALUATION OF REAL INTEGRALS 63

The first term on the right side of this equation blows up ify goes to−∞, and
the second term on the right side of this equation blows up ify goes to∞. Thus
cos z blows up exponentially when eithery → ∞ or y → −∞. As a result, the
contribution from the infinite semicircles, either the one in the upper half-plane or
the one in the lower half-plane, is not zero.

Now we note that

cos x = Re eix.

Since(1 + x2) is real, we have

I = Re J,

where

J =

∫ ∞
−∞

eix

1 + x2
dx.

It is possible to close the contour upstairs for the integralJ, aseiz = eix−y is ex-
ponentially small wheny → ∞. Therefore, we are allowed to close the contour
upstairs. A more detailed discussion of this can be found in Appendix B of Chap-
ter 8. The only singularity of the integrand enclosed by this contour is atz = i.We
easily get, using (2.27b),

J = 2πi Res(i) = 2πi
eiz

2z
|z=i = π

e
.

Hence we have

I =

∫ ∞
−∞

cos x

1 + x2
dx =

π

e
. (2.31)

Alternately, we may make use of the relation

cosx = Re e−ix

and get

I = Re K,

where

K =

∫ ∞
−∞

e−ix

1 + x2
dx.
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Sincee−iz = e−ix+y vanishes asy goes to minus infinity, we may close the contour
downstairs for the integralK and get the same answer forI .

h Problem for the Reader

Evaluate the integral

I =

∫ ∞
−∞
x sinx

1 + x2
dx. (2.32)

F Solution

Again, the first step is to make the contour a closed contour. If this is done, we may
evaluate the integral by the use of Cauchy’s residue theorem.

But it is not possible to close the contour either upstairs or downstairs with the
factor sinx in the numerator. This is because, just like the magnitude ofcos z,
the magnitude ofsin z is exponentially large ify, the imaginary part ofz, is large,
regardless of whethery is positive or negative.

Let us try another way. We have

sinx = Imeix,

and since the other factors of the integrand are real, we get

I = ImJ,

where

J =

∫ ∞
−∞

xeix

1 + x2
dx.

We close the contour upstairs and get, using (2.27b),

J = 2πi
ie−1

2i
=
πi

e
.

Thus

I =

∫ ∞
−∞
x sinx

1 + x2
dx =

π

e
. (2.33)
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Next we consider the integral

I =

∫ ∞
−∞
sinx

x
dx. (2.34)

Note that, although its denominator vanishes atx = 0, sinx/x is finite atx = 0,
as its numerator vanishes atx = 0 as well. Indeed,sin z/z is an entire function of
z.

Again, it is not possible to close the contour of integration withsinx as the
numerator. So let us try the trick of replacingI by the imaginary part ofJ, where

J =

∫ ∞
−∞
eix

x
dx.

But the integrand ofJ blows up atx = 0. This is because the denominator of
the integrand vanishes atx = 0, while the numerator of the integrand does not.
Therefore, the integralJ is divergent and meaningless, and the trick of replacing
sinx with eix fails.

Since the origin is a troublesome point, let us deform the contour away from
the origin. This is possible as the integrandsin z/z is analytic atz = 0. It does
not matter what precisely the contour is. We may, for example, deform the contour
into c, wherec goes from−∞ to −1 along the real axis, from−1 to 1 along a
curve lying in the upper half-plane, and from1 to∞ along the real axis. Thus we
have

Y

X

Figure 2.7

I =

∫
c

sin z

z
dz. (2.35)
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By (2.23) we have

I = I1 + I2,

where

I1 =

∫
c

eiz

2iz
dz, (2.36)

and

I2 = −
∫
c

e−iz

2iz
dz. (2.37)

The numerator of the integrand ofI1 is eiz, which allows us to close the contour
upstairs. Since the integrand ofI1 is analytic in the upper half-plane, we have

I1 = 0.

For the integralI2 we close the contour downstairs. Since the contour is clockwise
and since the only singularity of the integrand enclosed by the contour is located at
z = 0, we get, using (2.27b),

I2 = (−2πi)
(
− 1
2i

)
= π.

Thus we find

I =

∫ ∞
−∞
sinx

x
dx = π. (2.38)

Had we not deformed the contour away from the origin, bothI1 andI2 would have
been divergent integrals, as the integrands of these integrals blow up at the origin.

The contour of integration for an integral is not always the entire real axis, and
it is not always possible to close the contour either upstairs or downstairs. Never-
theless, sometimes we are still able to do so after making some minor changes. As
an example, consider the integral

∫ ∞
0

dx

1 + x4
, (2.39)

the contour of integration of which is the positive real axis only. Now the integrand
of this integral is an even function ofx. This is to say that the integrand atx = −r
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on the negative real axis is equal to the integrand atx = r on the positive real axis.
Thus we may integrate over both the positive real axis and the negative real axis
and divide the result by two. Therefore, we have

∫ ∞
0

dx

1 + x4
=
1

2

∫ ∞
−∞

dx

1 + x4
. (2.40)

Now that the contour of integration is the entire real axis, we may evaluate the in-
tegral by closing the contour either upstairs or downstairs. Let us close the contour
in the upper half-plane. The singularities of the integrand enclosed areeiπ/4 and
e3iπ/4.We get, after adding up the residues of these two points,

∫ ∞
0

dx

1 + x4
=

√
2π

4
. (2.41)

Consider next the integral

I =

∫ ∞
0

dx

1 + x5
. (2.42)

Since the integrand is not an even function ofx, it will not help if we add the
negative real axis to the contour of integration and divide by two. Instead, let us
consider the integrand on the ray of argument2π/5 in the complex plane, i.e.,

z = re2πi/5. (2.43)

On this ray,

z5 = r5.

Therefore, the integrand atz = re2πi/5 is 1/(1 + r5), which is the same as the
integrand atz = r on the positive real axis.

Let us therefore consider the integral

J =

∮
c

dz

1 + z5
, (2.44)

wherec is the closed contour consisting of the ray that is the positive real axis
going from zero toR, the ray that given by (2.43) going fromr = R to r = 0, and
the arc that is of the distanceR from the origin and joins these two rays. We shall
take the limitR→∞ at the end.

On the arc, the integrand vanishes likeR−5 asR → ∞. On the other hand,
the length of the arc is2πR/5, which is merely linearly proportional toR. Thus

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



68 COMPLEX ANALYSIS

R

2π
5

y

z=re
2πi/5

x

Figure 2.8

the integrand times the length of the arc vanishes asR → ∞. Therefore, the
contribution from the arc is zero asR→∞.

The integral over the ray of (2.43) in the limitR→∞ is related toI of (2.42)
by ∫ 0

∞
e2πi/5dr

1 + r5
= −e2πi/5I.

Therefore, we have

J = (1− e2πi/5)I. (2.45)

We may evaluateJ with the Cauchy residue theorem. The singularities of the
integrand are located at

ei(2n+1)π/5. (2.46)

The only singularity enclosed byc is eiπ/5. Thus we have, by (2.27b),

J =
2πi

5e4iπ/5
. (2.47)
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Hence we get ∫ ∞
0

dx

1 + x5
=

J

1− e2πi/5 =
π

5 sinπ/5
. (2.48)

The exact value ofsinπ/5 can be deduced from the result in homework problem
2.

As the final example of contour integration, we evaluate the integral

I =

∫ 2π
0

dθ

a+ b cosθ
, (2.49)

wherea andb are positive. We require thata > b so that the denominator of the
integrand does not vanish for anyθ.

While the contour of integration is the finite interval[0, 2π] , which is not
closed, we may transform it into a closed contour by making a change of variable.
We put

z ≡ eiθ.
As θ varies from0 to 2π, z traverses in the counterclockwise direction the unit
circle with the center at the origin. This circle is a closed contour. We have

dz = eiθidθ,

or

dθ =
dz

iz
.

We also have

cos θ =
1

2
(z + z−1).

Thus

I =

∮
c1

2dz

ib(z2 + 2az/b+ 1)
,

wherec1 is the unit circle with center at the origin. The singularities of the inte-
grand are located at the zeroes of the denominator of the integrand, which are

z = −a/b±
√
a2/b2 − 1.

The singularity enclosed byc1 is the one above with the plus sign. Applying the
Cauchy residue theorem, we get, by (2.27b),
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∫ 2π
0

dθ

a+ b cosθ
=

2π√
a2 − b2 . (2.50)

E. Branch Points and Branch Cuts

Consider the function

log z = log(reiθ) = ln r + iθ. (2.51)

Let us start out at the point A in the figure below, follow the closed pathc1 in the
figure in the counterclockwise sense, and come back to point A.

A

B

c

c

1

2

Figure 2.9

It is clear that while we return to the same location, the value ofθ is not the
same anymore. Indeed it changes toθ + 2π. Therefore, upon traversing the closed
path, we have

log z → log z + 2πi,
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which means thatlog z does not come back to its original value. This is true as
long as one defines it to be a continuous function along the closed path.

Note that if we follow the same closed path around the origin in the clockwise
sense and return to the same point, the value ofθ changes toθ − 2π. Thus the
function log z changes to(log z − 2πi). And if the closed path goes around the
origin in the counterclockwise sensen times,log z changes tolog z + 2nπi.

Thus we have an identity crisis: Which value should we choose to be the value
of log z at A?

It may help us to find the answer to this question if we repeat the considerations
above with the curvec2 in Figure 2.9. We note that the value ofθ does not change
as one starts at a point onc2 in the figure, traverses the closed path and comes back
to the starting point. As a consequence, the value oflog z does not change after the
closed pathc2 is traversed.

What is the difference between the pathsc1 and c2? The answer is thatc1
encloses the origin, whilec2 does not. Since the polar angleθ is the angle of the
position vector joining the origin toz, θ increases by2π as one goes once around
c1, and does not change as one goes aroundc2. As a consequence, the function
log z changes its value if the traversed path isc1, which encloses the origin, but
does not change its value if the traversed path isc2, which does not enclose the
origin. The origin is a special point with respect to the functionlog z; it is said to
be a branch point of the functionlog z.

More generally, we define the pointz0 as a branch point of the functionf(z) if
f(z) changes its value as one traces a closed path enclosingz0.

If we restrict ourselves to an open region that does not include the origin as an
interior point, the functionlog z can be uniquely defined in this region. This is be-
cause there is no closed path inside the region that encloses the origin. Therefore,
we may choose a point inside this region and define the value ofθ at this point to
be between0 and2π, say. Then the value ofθ for any point inside this region is
uniquely defined, and so is the functionlog z. The designation of the value ofθ at
the chosen point is not unique. For example, we may defineθ at the chosen point
to be between2π and4π, or between−π andπ. The values oflog z in this re-
gion are different with different definitions, but the functionlog z is single-valued
with each designation of the value ofθ at the chosen point. There is, therefore,
more than one consistent definition oflog z in a region. They are called different
branches oflog z.

We may verify that the real part and the imaginary part oflog z satisfy the
Cauchy-Riemann equations everywhere except at the origin. Thenlog z is analytic
in a region in which a branch oflog z is chosen and the function is uniquely defined.

Let us cut up the complexz-plane by drawing a curve joining the origin to
infinity. To be specific, we shall choose this curve to be the positive real axis. In
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the cutz-plane there is no closed contour that encloses the origin. We call the
positive real axis a branch cut oflog z.

Let us start at point A, which is above and infinitesimally close to the positive
real axis, and go along a circle in the counterclockwise sense, arriving at point B,
which is below and infinitesimally close to the positive real axis. Then the value
of log z at B differs from that at A by2πi. Thus log z is discontinuous across
the positivex axis. Nevertheless, if we restrict ourselves in the cutz-plane, the
function is single-valued. This is because the points A and B, separated by the
branch cut, are not regarded as the same point.

This is like thinking off(z) as a function not on a plane but on a parking
garage that has many levels. Let the point A be the entry point of the garage. Let
us choose the value ofθ at this point to be zero. As we go around a full circle in
the counterclockwise sense, we arrive not at the entry point of the garage but at
the point one level above it. The value oflog z is taken to be dependent on which
level we are at. Therefore, while the value oflog z changes by2πi as we go up one
level, the functionlog z is uniquely defined at each point of the parking garage.

If we go around the garage in the counterclockwise sensen times, we arrive at
the(n + 1)th level of the garage. This level is called the(n+ 1)th Riemann sheet
of the function. Sincen can be any positive or negative integer,log z has infinitely
many Riemann sheets.

There is no reason to restrict the branch cut to be on the positive real axis. We
may choose the branch cut to be on the negative real axis. If we start at the entry
point A with θ = 0 as before, then we are choosing the branch of the function on
the garage that is half a level below ground and half a level above ground. The
values ofθ in this branch are between−π andπ. We may, indeed, choose the
branch cut to be any curve joining the origin to infinity in any way.

While the pointz = 0 is a singularity oflog z in the finitez-plane, the point
infinity is also a branch point oflog z. To see this, we put

z =
1

ω
.

Then the pointω = 0 corresponds to the pointz =∞. Since

log z = − logω,

the functionlog z has a branch point atω = 0, or z = ∞. We also realize that a
branch cut oflog z, chosen in any way we just described, is always a curve joining
the only two branch points of the function.

It is straightforward to find the branch points for the functionlog(z − z0). Let
ω = z − z0; then

log(z − z0) = logω.
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Sinceω = 0 andω = ∞ are the branch points of the functionlogω, z = z0
andz =∞ are the branch points oflog(z − z0).

h Problem for the Reader

Find the branch points oflog(z2 − 1). Draw some possible sets of branch cuts.

F Solution

We have
log(z2 − 1) = log(z − 1) + log(z + 1).

Thus the points−1, 1, and∞ are the branch points of the functionlog(z2 − 1).
We shall draw branch cuts to ensure the function is single-valued in the cut

plane. Some possible sets of branch cuts for the functionlog(z2 − 1) are drawn
below.

Figure 2.10

h Problem for the Reader

Find the branch points of the function

log

(
z − i
z + i

)
.

Draw two sets of branch cuts for this function.
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F Solution

Since

log

(
z − i
z + i

)
= log(z − i)− log(z + i),

the branch points of the function in the finite plane arei and−i.
We draw two possible sets of branch cuts in the figure below. While the set of

branch cuts in the right-hand figure is self-explanatory, we shall say a few words
about the left-hand figure. Let us traverse in the counterclockwise sense a closed
path enclosing both branch points. Since this closed path encloses the pointi, we
have, as we return to the starting point,

Figure 2.11

log(z − i)→ log(z − i) + 2πi.

And since this closed path also encloses the point−i, we have

log(z + i)→ log(z + i) + 2πi.

Since

log

(
z − i
z + i

)

is equal to the difference oflog(z − i) andlog(z + i), its value does not change as
the closed path is traversed. Therefore, it suffices to draw just one finite branch cut
betweeni and−i to make the function
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log

(
z − i
z + i

)

single-valued in the cut plane. This is because there is no closed path in this cut
plane, which encloses just one of the branch points.

Note that this branch cut is a finite branch cut. That this is possible means that
infinity is not a branch point. This is easily verified directly. Letz = ω−1; then

log

(
z − i
z + i

)
= log

(
1− iω
1 + iω

)
.

We see from the right side of the equation above thatω = 0 is not a branch point
of the function.

Since infinity is not a branch point, it is not necessary to draw a branch cut
joining infinity with a finite point. We may therefore think of the two branch cuts
in the right-hand figure above as joining with each other at infinity, forming just
one continuous branch cut. We may draw this branch cut by starting from−i and
moving downward along the negative imaginary axis, passing through infinity and
following the positive imaginary axis to the pointi. This is somewhat like the way
Columbus tried to get to India.

Next we discuss the function

za = raeiaθ,

wherea is a complex number. As we traverse a closed path enclosing the origin
once in the counterclockwise sense, we have

za → ei2πaza.

Since the value ofza changes after such a trip, the origin is a branch point ofza.
Let z = ω−1. Then we haveza = ω−a, and we conclude that the pointz = ∞
is also a branch point ofza. Indeed, the points0 and∞ are the only two branch
points of the functionza. Thus this function is singled-valued in the plane with a
cut joining the origin with infinity.

We call attention to the fact ifa = n, wheren is an integer of either sign, then
ei2πa is equal toei2πn, which is unity. Thus the value ofzn does not change after a
closed path enclosing the origin is traversed. Therefore,z = 0 andz =∞ are not
branch points for the functionzn, wheren is either a positive integer or a negative
integer.
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Next we consider the case whena is equal to the rational numberm/n, where
m andn are integers having no common factors. The value of the functionzm/n

changes by a multiple ofei2πm/n after a path enclosing the origin is traversed once
in the counterclockwise sense. Thus the origin is a branch point of the function
zm/n. But after we go around the origin in the counterclockwise sensen times, the
function changes by a multiple ofei2πm, which is equal to unity. This says that the
functionzm/n has onlyn Riemann sheets.

h Problem for the Reader

Find the branch points of the functionza(1− z)b.

F Solution

If neithera nor b is an integer, the function has branch points atz = 0 andz = 1
in the finite plane.

Let z = ω−1; then

za(1− z)b = ω−a−b(ω − 1)b.

The function has a branch point atω = 0 unless(a + b) is an integer. Thus
za(1− z)b has a branch point atz =∞ unless(a+ b) is an integer.

As an example, consider the function(z − i)−1/2(1 − z)3/2. The pointsi and
1 are the branch points of this function, but infinity is not. Therefore, this function
is single-valued in the plane with a finite branch cut connectingi to 1.

We give a few pointers below to help the reader find the branch points of a
function.

a. If z0 is a branch point off(z), it is also a branch point oflog f(z). This is
because as the value off(z) changes, so does the value oflog f(z).

Similarly, a branch point off(z) is a possible branch point of[f(z)]a . We
qualify with the word “possible,” as there are exceptions. An example isf(z) =√
z anda = 2. In this case, the origin is a branch point forf(z), but not that of
[f(z)]2 .

b. If z0 is a zero off(z), it is a branch point oflog f(z). It is also a possible
zero of[f(z)]a . To prove this, letz0 be annth-order zero off(z), i.e.,
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f(z) = (z − z0)nF (z),

whereF (z) is analytic atz0 andF (z0) �= 0. Then

log f(z) = logF (z) + n log(z − z0).

We see from the formula above thatz0 is a branch point oflog f(z). Also, we have

[f(z)]a = (z − z0)na [F (z)]a .

From the formula above, we see thatz0 is a branch point of[f(z)]a unlessna is an
integer.

c. If z0 is a pole off(z), it is a branch point oflog f(z). It is also a possible
branch point of[f(z)]a . To prove this, letz0 be annth-order pole off(z), i.e.,

f(z) =
F (z)

(z − z0)n ,

whereF (z) is analytic atz0 andF (z0) �= 0. Thus

log f(z) = logF (z)− n log(z − z0).

We see from the formula above thatz0 is a branch point oflog f(z).

Also, we have

[f(z)]a = (z − z0)−na [F (z)]a .

From the formula above, we see thatz0 is a branch point of[f(z)]a unlessna is an
integer.

Therefore, to locate the branch points oflog f(z) or [f(z)]a , we look for the
zeroes, the poles, and the branch points off(z).

h Problem for the Reader

Find the branch points for
[
1− (1− z2)1/2]1/3.
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F Solution

Let f(z) = 1 − (1 − z2)1/2. Sincez = ±1 are the branch points off(z), by
point (a) they are also branch points of the function[f(z)]1/3. To find the zeroes of
1− (1− z2)1/2, or the roots of the equation

1 = (1− z2)1/2,

we square the equation above and get

z = 0.

But squaring an equation may produce roots that are not the roots of the equation.
So let us see ifz = 0 satisfies

√
1− z2 = 1. We have

√
(1− z2)|z=0 = ±1.

Thus the equation is not satisfied unless we choose the value of
√
1− z2|z=0 to

be1. To say this in another way, whetherz = 0 is a branch point for the function
[f(z)]1/3 depends on the branch we choose for the function

√
1− z2. And if we

choose the branch so that the function
√
1− z2 at z = 0 is unity, then forz very

small, we have √
1− z2 � 1− z2/2.

Thus

[f(z)]1/3 � z2/3/21/3,

andz = 0 is a cubic-root branch point of the function.

To see whether infinity is a branch point for[f(z)]1/3 , we setz = ω−1, and
we get

[f(z)]1/3 =
[
ω −

√
ω2 − 1

]1/3
ω−1/3.

Therefore,z =∞ is a cubic-root branch point for the function
[
1− (1− z2)1/2]1/3.

In summary, the branch points of the function in thez-plane are±1, ∞. In
addition, the origin is a branch point of the function provided that we choose the
branch in which

√
1− z2 is equal to unity atz = 0.
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h Problem for the Reader

Find the branch points of the functionlog
(
z +
√
1− z2

)
.

F Solution

Let f(z) =
(
z +
√
1− z2

)
. Since the points±1 are the branch points off(z),

they are the branch points of the functionlog f(z).
Next, the zeroes off(z) are given by√

1− z2 = −z.

There is no root for this equation.
Let z = ω−1, and we get

log
(
z +

√
1− z2

)
= log

(
1 +
√
ω2 − 1
ω

)
.

We see from the formula above thatω = 0 or z =∞ is a logarithmic branch point
of the function.

To summarize, the branch points for the function in thez-plane are±1 and∞.

We’ll give an example to illustrate how to use the concept of branch cuts to
calculate a real integral.

Example:

Evaluate the integral

I =

∫ ∞
0

lnx

4 + x2
dx

with contour integration.
The first thing to do is to relate this integral with another integral the contour

of integration of which is a closed contour. We apply Cauchy’s residue theorem to
evaluate the latter, and obtain the value of the former after the value of the latter is
found.

We draw a branch cut joining the origin to−i∞, and chooseθ, the argument
of z, to be zero on the positive real axis. The functionlog z on this Riemann sheet
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is then uniquely defined. In particular,log z is equal tolnx on the positive real
axis. Therefore, we may expressI as log z/(4 + z2) integrated over the positive
real axis. This contour ofI is not closed.

Let us define another integral

J ≡
∫ ∞
−∞

log z

4 + z2
dz.

The contour ofJ can be closed upstairs, as the contribution of the infinite semicir-
cle in the upper half-plane is of the order of the limit of(R lnR)/R2 asR → ∞,
where the factorlnR in the numerator of this quantity comes from the numerator
of the integrand, the factorR2 in the denominator of this quantity comes from the
denominator of the integrand, and the factorR in the numerator of this quantity is
the order of magnitude of the length of the arc. This quantity is equal to zero in the
limit R→∞.

The only singularity enclosed by this closed contour is atz = 2i. Note that,
starting at the point2,we may reach the point2i by traversing the counterclockwise
circular arc of radius2 with angular widthπ/2. Thus the argument of2i is π/2,
and we have

2i = 2eiπ/2.

As a result,

J = 2πi
log(2eiπ/2)

4i
= π
ln 2 + iπ/2

2
.

To obtainI from J, we expressJ as

J = J1 + J2,

where

J1 =

∫ ∞
0

log z

4 + z2
dz,

and

J2 =

∫ 0
−∞

log z

4 + z2
dz.

First of all,J1 is simplyI . Next we shall show thatJ2 is related toI as well. We
have, on the negative real axis,

log z = log(reiπ) = ln r + iπ.
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Thus

J2 =

∫ ∞
0

iπ + ln r

4 + r2
dr =

iπ2

4
+ I.

Therefore,

J = 2I +
iπ2

4
.

With the value ofJ obtained earlier with the help of the Cauchy residue theorem,
we get

I =

∫ ∞
0

lnx

4 + x2
dx = π

ln 2

4
. (2.52)

We close this section with two topics: (a) a discussion of the principal value of
an integral, and (b) a discussion of the Plemelj formulae.

Back in the high school days when we were first introduced to integrations over
a real variable, some of us might have puzzled over the value of real integrals such
as ∫ 3

−2
dx

x
.

For, if we carry out the integration in a straightforward way, we get

∫ 3
−2
dx

x
= lnx |3−2= ln 3− ln(−2).

But what is the value ofln(−2)?
This ambiguity is due to a difficulty with this integral. The fact is that the

integrand1x has a simple pole at the origin. Since the contour of integration passes
through the origin, the integral ∫ 3

−2
dx

x

is actually undefined as it is.
Let us try to define this integral by identifying it with

∫ −ε1
−2

dx

x
+

∫ 3
ε2

dx

x
,
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whereε1 andε2 are positive and infinitesimally small constants. This means that
we first integrate fromx = −2 to the point−ε1, which is to the left of the origin,
jump over the origin, and continue to integrate from the pointε2, which is to the
right of the origin, to the pointx = 3. In this way we make sure that the contour of
integration does not pass through the origin. We define

∫ 3
−2
dx

x

to be this integral in the limitε1 andε2 go to zero.
There is something encouraging about this defintion of the divergent integral

∫ 3
−2
dx

x
.

For, while both integrals are infinite asε1 and ε2 go to zero, the first integral is
negative and the second integral is positive. Indeed, the integrands of both integrals
are the same function1/x, which is an odd function ofx. Thus there is cancellation
between these two integrals, and we hope that the sum of them is finite asε1 and
ε2 go to zero.

To see if this true, we calculate these integrals explicitly. We have

∫ −ε1
−2

dx

x
=

∫ 2
ε1

dx

x
= ln

ε1
2
,

and ∫ 3
ε2

dx

x
= ln

3

ε2
.

Thus the sum of the two integrals above is

ln
3ε1
2ε2
.

This value depends on the ratio

ε1
ε2

and is not unique.
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Let us define the principal value of the divergent integral

∫ 3
−2
dx

x

to be the one withε1 = ε2 :

P

∫ 3
−2
dx

x
=

∫ −ε
−2
dx

x
+

∫ 3
ε

dx

x

with ε infinitesimal. We then have

P

∫ 3
−2
dx

x
= ln3/2,

which is unique.
For some integrals, the singularity of the integrand may be located atx0 rather

than at the origin. Letf(x) blow up like a simple pole atx0, an interior point of
the interval of integration. We define the principal value of the divergent integral∫ b
a f(x)dx to be

P

∫ b
a

f(x)dx =

∫ x0−ε
a

f(x)dx+

∫ b
x0+ε

f(x)dx,

whereε is positive and infinitesimal.
We mention that not all divergent integrals can be made finite and unique as

we take their principal values. For example, the principal value of the divergent
integral ∫ 2

−1
dx

x2

remains divergent, as1/x2 is positive at the two sides of the origin and there is no
cancellation between the integral over positive values ofx and that over negative
values ofx. On the other hand, the principal value of a convergent integral such as

∫ 2
−1
sinx

x
dx

is equal to the integral itself. This is because omitting an infinitesimally small
interval of integration does not change the value of a convergent integral.
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We also mention that there are other ways to define divergent integrals such as∫ 2
−2
dx

x
.

As an example, the contour of this integral may be chosen to be the half-circle of
radius 2 which has the origin as its center and lies in the upper half-plane. We
may also make other choices of the contour of integration, but as long as the curve
does not pass through the origin, the integral is defined. We may then carry out the
integration explicitly and get ∫ 2

−2
dz

z
= ln

2

−2 .

The value of the integral depends on the difference of the phase of the upper end-
pointz = 2 and that of the lower endpointz = −2 as the contour is traversed. Let
us choose this contour to lie entirely in the upper half-plane, the endpoints being
excluded. While there are many such contours, by Cauchy’s integral theorem the
value of the integral is independent of these contours we choose. Now as we go
from−2 to 2 on such a contour, we go clockwise and the phase of the pointz = 2

is smaller than that of the pointz = −2 by π. Thus we have, if the entire contour
of integration lies above the origin,∫ 2

−2
dz

z
= ln

(
2

−2
)
= −iπ.

By choosing the contour to be the one that is infinitesimally above the real axis, we
may express this result as∫ 2

−2
dx

x+ iε
− P

∫ 2
−2
dx

x
= −iπ,

the second integral above being zero as its integrand is an odd function ofx.

h Problem for the Reader

If we define the contour for the integral∫ 3
−2
dz

z

to be a curve joining−2 to 3 and lying entirely in the lower half-plane, the end-
points being excluded, find the value of this integral.
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F Solution

If we follow such a curve from−2 to 3, we go counterclockwise, and the phase
of the pointz = 3 is larger than that of the pointz = −2 by π. Thus for all such
contours, we have ∫ 3

−2
dz

z
= ln(3/2) + iπ,

which differs from the principal value of this integral byiπ.
By choosing the contour to be infinitesimally below the real axis, we may ex-

press this result as ∫ 3
−2

dx

x− iε − P
∫ 3
−2
dx

x
= iπ.

We are now ready to prove the Plemelj formulae, which say that

∫ b
a

r(x′)
x′ − (x± iε)dx = P

∫ b
a

r(x′)
x′ − xdx± iπr(x)

wherea < x < b. We assume that the functionr(x′) is such that the integral above
is convergent. This does not exclude the possibility forr(x′) to be infinite at some
point inside the interval of integration. It just means thatr(x′) must not blow up
too badly at any such points for the integral to diverge. For example, it must not
blow up as fast as a simple pole at the endpointsa andb.

We also point out that considered as a function ofx′, the integrand above has
a pole atx± iε. Since the contour of integration is on the real axis, and sinceε is
infinitesimal, the plus and minus signs in front ofε in the integral merely signify
whether the pole is above or below the contour of integration.

We write

∫ b
a

r(x′)
x′ − x− iεdx

′ =
∫ b
a

r(x′)− r(x)
x′ − x − iε dx

′ +
∫ b
a

r(x)

x′ − x− iεdx
′.

Note that the factorr(x) in the last integral above , being independent ofx1,
may be placed at the left of the integral sign. We also note that the integrand of the
first integral on the right side of the equation above is finite in the limit asε goes
to zero. This is because the numerator of the integrand vanishes atx′ = x. Thus
we may ignore the term−iε in the denominator of this integral. Since the principal
value of such an integral is equal to the integral itself, we have
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∫ b
a

r(x′)− r(x)
x′ − x dx′ = P

∫ b
a

r(x′)− r(x)
x′ − x− iε dx

′ = P
∫ b
a

r(x′)
x′ − xdx

′−P
∫ b
a

r(x)

x′ − xdx
′.

Again, r(x) in the last integral above may be taken to the left of the integral
sign. Generalizing slightly what we have discussed, it is possible to prove that

∫ b
a

dx′

x′ − x − iε − P
∫ b
a

dx′

x′ − x = iπ.

With all these considerations, the first of the Plemelj formulae is obtained.
The second Plemelj formula is obtained from the first Plemelj formula by tak-

ing complex conjugation.
We mention that if we replace, in the integral of the Plemelj formula, the real

variablex by the complex variablez, we get the function

f(z) =

∫ b
a

r(x′)
x′ − z dx

′,

which is analytic provided thatz is not a point on the interval[a, b]. This is because
the values ofx′, the variable of integration, are restricted to the real values between
a andb. Therefore, the denominator(x′ − z) never vanishes as long asz is not
equal to some real value betweena andb. The factor1/(x′ − z) in the integrand
is thus an analytic function ofz provided thatz is not a point in the interval[a, b] ,
and hence so isf(z).

The functionf(z) is discontinuousacross the interval[a, b], as we shall presently
see.

h Problem for the Reader

Find the values off(x + iε) and f(x − iε) whena < x < b. Find also the
discontinuity off(z) across the branch cuta < x < b.

F Solution

By the first of the Plemelj formulae, we have

f(x+ iε) = P

∫ b
a

r(x′)
x′ − xdx

′ + iπr(x).
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By the second Plemelj formula, we have

f(x− iε) = P
∫ b
a

r(x′)
x′ − xdx

′ − iπr(x).

Therefore,
f(x+ iε)− f(x− iε) = 2iπr(x)

is the discontinuity off(z) across the branch cuta < x < b.

Thus the functionf(z) defined by the integral above has a branch cut froma
to b, and is analytic everywhere else.We also note that, since1/(x′ − z) vanishes
asz goes to infinity,f(z) vanishes asz goes to infinity.

The converse is also true: Iff(z) is analytic in the complex plane with the
exception of a branch cut froma to b on the real axis, does not blow up as fast
as a pole either ata or at b, and vanishes at infinity, thenf(z) is given by the
integral above, with2πir(x) the discontinuity off(z) across the branch cut. (See
homework problem 15.)

This means that we can construct the functionf(z) by merely knowing its dis-
continuity across the branch cut, provided that all the conditions mentioned above
are satisified.

These results are easily generalized to the case in which the branch cut is not a
straight line on the real axis but a curve in the complex plane.

F. Fourier Integrals and Fourier Series

In this section we shall discuss the Fourier integral and the Fourier series, which
are necessary tools for solving many physical problems. We shall encounter some
of these problems in Chapters 4 and 5.

Let F (x) be a function defined for all values ofx from −∞ to∞. We define
the Fourier transform ofF (x) as

F̃ (k) ≡
∫ ∞
−∞
e−ikxF (x)dx. (2.53)

The Fourier transform̃F (k) is uniquely determined onceF (x) is given, provided
that the integral above is convergent.
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The Fourier integral theorem says that the converse is also true, that onceF̃ (k)
is given, one is able to determineF (x) from F̃ (k). Indeed, the inversion formula
of Fourier transform is

F (x) =

∫ ∞
−∞
eikxF̃ (k)

dk

2π
(−∞ < x <∞), (2.54)

which has a striking resemblance to (2.53).
With some partial differential equations, it is easier to findF̃ (k) than to find

F (x). One of the best ways to solve such equations is to findF̃ (k) first and then
use Fourier’s inversion theorem to determineF (x).

To prove Fourier’s inversion formula, we define

Iλ(x) ≡
∫ λ
−λ
eikxF̃ (k)

dk

2π
. (2.55)

Then (2.54) is exactly
F (x) = lim

λ→∞
Iλ(x).

We substitute (2.53) into (2.55) and get

Iλ(x) ≡
∫ λ
−λ
eikx
dk

2π

[∫ ∞
−∞
e−ikx

′
F (x′)dx′

]
.

In the double integral above, we are supposed to integrate overx′ first before we
integrate overk. We shall reverse the order of the integration, integrating overk

before integrating overx′. There are conditions onF (x) under which this change
of the order of integration is justified, but we will not elaborate on it here.

It is easy to carry out the integration overk and get

∫ λ
−λ
eik(x−x

′) dk

2π
=
sin [λ(x′ − x)]
π(x′ − x) . (2.56)

ThusIλ(x) is given by

Iλ(x) ≡
∫ ∞
−∞
sin [λ(x′ − x)]
π(x′ − x) F (x

′)dx′. (2.57)

For the sake of getting the point across quickly, we shall first give a heuristic proof
of the Fourier integral theorem without regard to rigor. We put

(x′ − x)λ ≡ X ; (2.58)
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then (2.57) becomes

Iλ(x) ≡
∫ ∞
−∞
sinX

πX
F

(
x+
X

λ

)
dX. (2.59)

Since

lim
λ→∞

F

(
x +
X

λ

)
= F (x), (2.60)

we have

lim
λ→∞

Iλ(x) = F (x)

∫ ∞
−∞
sinX

πX
dX = F (x), (2.61)

where we have made use of (2.38). This is the Fourier integral theorem (2.54).
As I have warned the reader, there is a lack of mathematical rigor with the

arguments given above. This is because (2.61) is obtained after we replaceF (x+
X/λ) in (2.59) withF (x). Such a replacement is valid only ifX/λ can be regarded
as very small whenλ is very large. ButX, the integration variable of (2.59),
ranges from−∞ to∞, and can surely be larger thanλ. A rigorous proof must
therefore include the argument that, asλ is very large, the region of integration that
contributes to the integral (2.59) is restricted to

|X | 
 λ,

or, by (2.58),

|x′ − x| 
 1.

To prove this, we return to the integral in (2.57). The integration variable of this
integral isx′. At x′ = x, we have, by l’Hopital’s rule,

lim
x′→x

sin [λ(x′ − x)]
π(x′ − x) =

λ

π
.

Therefore, the integrand of (2.57) atx′ = x is equal toλF (x)/π, a very large
number whenλ is very large. It is clear that the integrand of (2.57) continues to be
of the order ofλF (x) in a sufficiently small interval around the pointx′ = x. To be
specific, if(x′−x) is as small as1/λ, then(x′−x)−1 is as large asλ. Furthermore,
since(x′− x) is small,F (x′) is approximatelyF (x). Thus the integrand of (2.57)
is of the order ofλF (x) in the small interval in which(x′−x) is of the order of1/λ.
The value of the integral over this small interval is of the order of the magnitude of
the integrand times the width of the interval, or
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[λF (x)] · (1/λ) = F (x).

This order of magnitude estimate is in agreement with (2.61).
But, as we have mentioned, we need to prove that we may replaceF (x′) by

F (x) for the entire integral of (2.57). The problem is that whenx′ is considerably
different fromx, the integrand of (2.57) does not vanish asλ → ∞. For such
values ofx′, it is not justified to replaceF (x′) byF (x).

We note that whenλ is very large, the factorsin [λ(x′ − x)] in the integrand is
a rapidly oscillatory function ofx′. As we shall discuss in more detail in Chapter 9,
integrating a rapidly oscillatory function over an interval gives a very small number.
For example, ∫ 1

0
cos(λx′)dx′ =

sinλ

λ
,

which vanishes asλ goes to infinity. Therefore, with the exception of the small
interval aroundx′ = x we just discussed, the contributions to the integral of (2.57)
from any other region are very small. And asλ → ∞, the contributions from
any region other than an infinitesimal interval aroundx′ = x vanish. Thus, in the
limit λ → ∞, the contributions to the integral (2.57) come exclusively from an
infinitesimal neighborhood of the pointx′ = x. For this reason, we may replace
F (x′) in the integrand of (2.57) byF (x) and get

lim
λ→∞

Iλ(x) = F (x) lim
λ→∞

∫ ∞
−∞
sin [λ(x′ − x)]
π(x′ − x) dx

′.

By (2.38), we get precisely (2.61), and the inversion formula for Fourier transform
has been proven.

As a side remark,

lim
λ→∞

sin [λ(x′ − x)]
π(x′ − x) ≡ δ(x′ − x) (2.62)

is known to be the Dirac delta function. The Dirac delta function is very useful
with many problems in science and engineering, and I shall say a few words about
its properties here. First of all, by (2.38) we have∫ ∞

−∞
δ(x′ − x)dx′ = 1.
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Furthermore, since there is no contribution from any region outside an infinites-
imal neighborhood ofx′ = x, we have, for any functiong(x′),∫ ∞

−∞
δ(x′ − x)g(x′)dx′ = g(x)

∫ ∞
−∞
δ(x′ − x)dx′ = g(x).

In particular, ∫ ∞
−∞
δ(x′)e−ikx

′
dx′ = 1,

which says that the Fourier transform ofδ(x) is unity. By the inversion formula of
Fourier transform, we find

δ(x) =

∫ ∞
−∞
eikx
dk

2π
, (2.63)

which is the integral representation for the Dirac delta function. (The Dirac delta
function will be discussed more fully in Chapter 4.)

h Problem for the Reader

Find the Fourier transform ofF (x) =
1

4 + x2
, −∞ < x <∞.

F Solution

We have

F̃ (k) =

∫ ∞
−∞
e−ikx

4 + x2
dx.

If k > 0, we close the contour downstairs and get

F̃ (k) = −2πie
−2k

−4i =
πe−2k

2
.

If k < 0, we close the contour upstairs and get

F̃ (k) = 2πi
e2k

4i
=
πe2k

2
.
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Thus

F̃ (k) =
πe−2|k|

2
.

In the proof of the Fourier integral theorem, we have implicitly assumed thatF (x)
is continuous. Consider now the case whenF (x) is discontinuous atx0.We shall
denoteF (x+0 ) as the value ofF (x) asx approachesx0 from the right, andF (x−0 )
as the value ofF (x) asx approachesx0 from the left. We write (2.59) as

Iλ(x0) ≡
∫ 0
−∞
sinX

πX
F

(
x0 +

X

λ

)
dX+

∫ ∞

0

sinX

πX
F

(
x0 +

X

λ

)
dX. (2.64)

In the limit λ → ∞, F (x0 + X
λ ) approachesF (x−0 ) if X is negative, and ap-

proachesF (x+0 ) if X is positive. Therefore, we have

lim
λ→∞

Iλ(x0) =
F (x−0 ) + F (x

+
0 )

2
,

which is, explicitly,

∫ ∞
−∞
eikx0 F̃ (k)

dk

2π
=
F (x−0 ) + F (x

+
0 )

2
. (2.65)

This says that the Fourier integral of a functionF (x) is equal to the mean of the
two values ofF (x) atx0, at whichF (x) is discontinuous.

h Problem for the Reader

Let

F (x) = e−x, x > 0,
= 0, x < 0.

This function is continuous atx = 0. Find F̃ (k) and verify if (2.65) is valid.

F Solution

It is easy to find that

F̃ (k) =

∫ ∞
0
e−ikxe−xdx =

1

1 + ik
.
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Verifying (2.65) is less trivial. The left side of (2.65) withx0 = 0 is

∫ ∞
−∞
dk

2π

1

1 + ik
,

which is divergent.
We note that by (2.55), the lower limit and the upper limit of the Fourier in-

version integral are−λ andλ, respectively, with the limitλ → ∞ taken after
the integration has been carried out. Thus the divergent integral above should be
regarded as

lim
λ→∞

∫ λ
−λ
dk

2π

1

1 + ik
= lim
λ→∞

∫ λ
−λ
dk

4π

(
1

1 + ik
+

1

1− ik
)

= lim
λ→∞

∫ λ
−λ
dk

2π

1

1 + k2
=
1

2
,

a finite result which agrees with the right side of (2.65).
Next we write, in (2.53),

e−ikx = cos kx− i sinkx.

Then (2.53) becomes

F̃ (k) = A(k)− iB(k),
where

A(k) =

∫ ∞
−∞
cos kxF (x)dx, B(k) =

∫ ∞
−∞
sinkxF (x)dx. (2.66)

We find from (2.66) that

A(k) = A(−k), B(k) = −B(−k).

ReplacingF̃ (k) in the inversion formula (2.54) byA(k)− iB(k), we get, after
making use of the facts thatA(k) is an even functon ofk andB(k) is an odd
function ofk,

F (x) =

∫ ∞
−∞
[A(k) cos kx+B(k) sin kx]

dk

2π
. (2.67)

If F (x) is an even function ofx, (2.66) shows thatB(k) = 0. In this case,F (x)
has the integral representation
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F (x) =

∫ ∞
−∞
A(k) cos kx

dk

2π
. (2.68)

If F (x) is an odd function ofx, (2.66) shows thatA(k) = 0. Therefore,F (x) has
the integral representation

F (x) =

∫ ∞
−∞
B(k) sin kx

dk

2π
. (2.69)

We shall next derive the Fourier integral representations of a functionF (x),
which is given only in the semi-infinite region0 < x <∞.

We may, as a mathematical artifact, define the functionF (x) for x negative by

F (−x) = F (x).

The functionF (x) is now defined for all values ofx, and is an even function
of x. As we have shown, an even function ofx has the Fourier cosine integral
representation. Thus a function originally defined only in the semi-infinite region
0 < x <∞ has a Fourier cosine integral representation given by (2.68). By (2.66)
and the fact thatF (x) is even, we may express the coefficientA(k) as

A(k) = 2

∫ ∞
0
cos kxF (x)dx. (2.70)

In this expression forA(k), the region of integration is the positivex axis, on which
the value ofF (x) is originally given.

Alternately, we may also defineF (x) for negative values ofx by

F (−x) = −F (x).

The function is now defined for all values ofx, and is an odd function ofx. An odd
function ofx has the Fourier sine integral representation. Thus a functionF (x)

given only forx > 0 has the Fourier sine integral representation (2.69), where

B(k) = 2

∫ ∞
0

sin kxF (x)dx. (2.71)

Note that the Fourier sine integral (2.69) vanishes as we setx = 0. If F (0+)
is not zero, the Fourier sine integral atx = 0 is not equal toF (0+). Instead, the
Fourier sine integral atx = 0 is equal to half ofF (0+) + F (0−), which is zero as
F (x) is by construction an odd function ofx.
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Next we turn to representations of functions given in a finite region. As we will
see, such a function is represented by an infinite sum, not an integral. Letf(θ) be
a function given in the interval[−π, π] , and let

an ≡ 1
2π

∫ π
−π
e−inθf(θ)dθ. (2.72)

The coefficientan, known as the Fourier coefficient off(θ), is determined once
f(θ) is given.We shall prove that

f(θ) =

∞∑
n=−∞

ane
inθ. (2.73)

The series in (2.73) is known as the Fourier series off(θ). It shows that the
functionf(θ) is determined once the Fourier coefficientan is given.

Sinceeinθ is a periodic function ofθ with the period2π, so is the Fourier series
in (2.73). Therefore, if only implicitly so, the functionf(θ) outside the interval
[−π, π] is assumed to be a periodic function ofθ satisfying

f(θ + 2π) = f(θ). (2.74)

Before we prove the inversion formula (2.73), we first say a few words about why
such a formula is expected. We multiply (2.73) bye−imθ/(2π) and integrate the
equation from−π toπ.We get

1

2π

∫ 2π
0
e−imθf(θ)dθ =

1

2π

∫ 2π
0
e−imθ

∞∑
n=−∞

ane
inθdθ. (2.75)

The integrand on the right side of (2.75) is an infinite series, and there are condi-
tions under which it is justified to carry out the integration term by term. We shall
assume such conditions are satisfied. Since

1

2π

∫ π
−π
e−i(m−n)θdθ = 1, (m = n),

= 0, (m �= n), (2.76)

the only term on the right side of (2.75) that does not vanish after the integration
has been performed is the term withm = n. Thus the right side of (2.75) is equal
to am and we get (2.72). We have therefore shown that, if the functionf(θ) given
in the region−π < θ < π has a Fourier series expansion, its Fourier coefficient
must be the one given by (2.72).
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The Fourier coefficientan of f(θ) can be compared with the componentAn of
a vector−→v in space: −→v = A1−→e1 + A2−→e2 + A3−→e3 , (2.77)

where−→e1 , −→e2 , and−→e3 are the unit vectors in the directions of thex, y,andz axes,
respectively. Since the unit vectors−→e1 , −→e2 , and−→e3 are mutually orthogonal, the
scalar product between them is given by

−→em · −→en = 1, m = n,
= 0, m �= n. (2.78)

From (2.77) and (2.78) we have

An =
−→en · −→v . (2.79)

We note that (2.77) is the analogue of (2.73), with−→en the counterpart ofeinθ. Also,
(2.78) is the analogue of (2.76), and (2.79) is the analogue of (2.72). Note also that
it is not possible to represent a vector−→v in the three-dimensional space by only
two of its components, sayA1 andA2, for

−→v �= A1−→e1 +A2−→e2 .
Rather, we need all three of the basis vectors−→e1 , −→e2 , and−→e3 to represent a three-
dimensional vector−→v . Such a set of basis vectors is said to be a complete set of
basis vectors in the three-dimensional space. Returning to the issue of the Fourier
series, (2.73) says that the set of functionseinθ, n = 0,±1,±2, · · · is complete. In
other words, it is possible to use this set of functions to represent a functionf(θ)
in the form (2.73) for−π ≤ θ ≤ π.

To prove (2.73), we define

SN(θ) ≡
N∑

n=−N
ane

inθ. (2.80)

The remaining task is to show that

f(θ) = lim
N→∞

SN(θ).

Substituting (2.72) into (2.80), we get

SN(θ) ≡
N∑

n=−N

1

2π

∫ π
−π
ein(θ−θ

′)f(θ′)dθ′. (2.81)
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Next we carry out the summation overn in (2.81). Since

N∑
n=−N

ωn = ω−N (1 + ω + · · ·+ ω2N) = ω−N 1− ω
2N+1

1− ω

=
ω−N − ωN+1
1− ω ,

we have, by multiplying both the numerator and the denominator of the expression
above byω−1/2,

N∑
n=−N

ωn =
ω−(N+1/2) − ωN+1/2
ω−1/2 − ω1/2 .

Identifyingeiθ with ω, we get

N∑
n=−N

einθ =
e−i(N+1/2)θ − ei(N+1/2)θ

e−iθ/2 − eiθ/2 =
sin(N + 1/2)θ

sin(θ/2)
. (2.82)

Thus (2.81) is

SN(θ) =
1

2π

∫ π
−π
sin [(N + 1/2)(θ′ − θ)]
sin [(θ′ − θ)/2] f(θ′)dθ′. (2.83)

We shall considerSn whenN is very large. At a pointθ′ �= θ, the integrand above
is a rapidly varying function ofθ′. And at θ′ = θ, the integrand is as large as
(2N + 1)f(θ). As we have just explained, this means that the contributions to the
integral come from a small neighborhood ofθ′ = θ. We may therefore make the
approximationsin [(θ′ − θ)/2] ≈ (θ′ − θ)/2, and (2.83) becomes

SN (θ) ≈ 1
π

∫ π
−π
sin [(N + 1/2)(θ′ − θ)]

(θ′ − θ) f(θ′)dθ′. (2.84)

By (2.62) and (2.84), we get

lim
N→∞

Sn(θ) = f(θ), (2.85)

which is (2.73).
In the argument above, we have implicitly assumed thatf(θ) is continuous.

Let f(θ) be discontinuous atθ0, with f(θ+0 ) the value off(θ) asθ approachesθ0
from the right, andf(θ−0 ) the value off(θ) asθ approachesθ0 from the left. It is
then straightforward to prove that

lim
N→∞

SN =
1

2

[
f(θ+0 ) + f(θ

−
0 )

]
. (2.86)
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Thus at a point of discontinuity, the Fourier series of a function is equal to the
mean of the left and right limiting values of the function.

h Problem for the Reader

Find the Fourier coefficientan for the function

f(θ) = 1, (0 < θ < π)

= −1, (−π < θ < 0). (2.87)

What are the values of the series atθ = 0, π/2, andπ? Can you explain why the
series takes such values at these points?

F Solution

We have

an = − 1
2π

∫ 0
−π
e−inθdθ +

1

2π

∫ π
0
e−inθdθ =

1− (−1)n
πin

,

or

an =
2

πin
, (n odd)

= 0, (n even).

By (2.73), the Fourier series forf(θ) is

2

πi

[
eiθ

1
− e

−iθ

1
+
e3iθ

3
− e

3iθ

3
+ · · ·

]
,

or
4

π

[
sin θ

1
+
sin 3θ

3
+ · · ·

]
. (2.88)

At the pointθ = π/2, f(θ) is continuous. Therefore, the value of the Fourier
series atθ = π/2 is equal to the value off(θ) at θ = π/2. This gives us the
identity

4

π

[
1− 1
3
+
1

5
− · · ·

]
= 1.
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The Fourier series (2.88) vanishes atθ = 0. To understand why, we note that the
functionf(θ) is discontinuous atθ = 0, with

f(0−) = −1, f(0+) = 1.

By (2.86), the Fourier series off(θ)must vanish atθ = 0. The Fourier series (2.88)
also vanishes atθ = π. To understand why, we note thatf(θ) is equal to unity for
0 < θ < π. Thus we have

f(π−) = 1.

The valuef(π+) is not explicitly given. But the functionf(θ) is regarded as peri-
odic with the period2π. By (2.74), we have

f(θ) = −1, (π < θ < 2π),

and hence

f(π+) = −1.
By (2.86), the Fourier series off(θ) must vanish atθ = π.

Next we derive another series known as the complete Fourier series for a func-
tion f(θ).We substitute

einθ = cosnθ + i sinnθ

into (2.73) and get

f(θ) = a0 +

∞∑
n=1

[An cosnθ + Bn sinnθ] , (2.89)

where

An = an + a−n, Bn = i(an − a−n), (n > 0). (2.90)

Equation (2.89) is the complete Fourier series forf(θ). From (2.72) and (2.90),
we have

An =
1

π

∫ π
−π
f(θ) cosnθdθ, Bn =

1

π

∫ π
−π
f(θ) sinnθdθ. (2.91)
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If f(θ) is an even function ofθ, we find from (2.91) that

Bn = 0,

and the complete Fourier series (2.89) is reduced to

f(θ) = a0 +
∞∑
n=1

An cosnθ, (2.92)

which is called a Fourier cosine series. The coefficientsAn anda0 are given by

An =
2

π

∫ π
0
f(θ) cosnθdθ, (2.93)

and

a0 =
1

π

∫ π
0

f(θ)dθ, (2.94)

which are integrals over positive values ofθ only.
Similarly, if the functionf(θ) is an odd function ofθ, we have from (2.72) and

(2.91) that
a0 = An = 0.

Therefore, the complete Fourier series (2.89) is reduced to the Fourier sine series

f(θ) =

∞∑
n=1

Bn sinnθ, (2.95)

where

Bn =
2

π

∫ π
0
f(θ) sinnθdθ. (2.96)

An example of an odd function ofθ is the function of (2.87). As we have found,
the series (2.88) for this function is indeed a Fourier sine series.

If a function f(θ) is given only in the interval0 < θ < π, we may, as a
mathematical artifact, define this function forθ negative to be

f(−θ) = −f(θ).

In this way, we have given meaning to the functionf(θ) in the region−π < θ < 0;
the function so defined is an odd function ofθ. As we have seen, an odd function
can be represented by the Fourier sine series (2.95). This means that a function
f(θ) given for0 < θ < π can be represented by the Fourier sine series (2.95) with
the coefficientBn given by (2.96).
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We may also extend the domain of a functionf(θ) given for0 < θ < π by
choosing it to satisfy

f(−θ) = f(θ).
The functionf(θ) is then an even function ofθ with the domain extended to
[−π, π] . This function can be represented by the Fourier cosine series (2.92) with
the coefficientsAn anda0 given by (2.93) and (2.94).

We may also extend the results above to a function ofx, which has the domain
of [−L, L], whereL does not have to be equal toπ. We define

θ ≡ π
L
x; (2.97)

then the domain ofθ is [−π, π] . By replacingθ in (2.73) withπx/L, we find that

F (x) =
∞∑

n=−∞
ane

inπx/L, (−L < x < L). (2.98)

Making the same replacement in (2.72), we find that

an =
1

2L

∫ L
−L
e−inπx/LF (x)dx. (2.99)

If the domain of a functionF (x) is 0 < x < L, we may express this function as a
Fourier cosine series

F (x) = a0 +

∞∑
n=1

An cos(nπx/L), (0< x < L). (2.100)

The coefficients in the series above are given by

a0 =
1

L

∫ L
0
F (x)dx (2.101)

and

An =
2

L

∫ L
0
F (x) cos(nπx/L)dx. (2.102)

This function can also be expressed by the Fourier sine series

F (x) =

∞∑
n=1

Bn sin(nπx/L), (0 < x < L) (2.103)

where

Bn =
2

L

∫ L
0
F (x) sin(nx/L)dx. (2.104)
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We close this section with two remarks:

a. Let us compare the Fourier series
∑∞
n=−∞ ane

inθ with the Maclaurin series,
with which the readers are perhaps more familiar. The convergence of the Maclau-
rin series depends on the magnitude ofz. Specifically, the series converges faster
if the magnitude ofz is smaller. The situation is different for a Fourier series. This
is because the magnitude ofeinθ is unity for all real values ofθ. Therefore, there
is no a priori reason why a Fourier series should always converge faster forθ = 0

than forθ = π/2, say. As a matter of fact, if we putz ≡ eiθ, the Fourier series
(2.73) becomes

∑∞
n=−∞ anz

n, which is a Laurent series. Since the magnitude of
z = eiθ is equal to unity for all real values ofθ, there is no a priori reason why the
convergence of the series favors any particular value ofθ.

In Chapters 4 and 5, we shall show how to express a solution of a partial differ-
ential equation by a Fourier series. We shall find that each term of the series repre-
sents a mode of the solution of the equation. The sum over the first few modes often
approximates the solution equally well for all values of the independent variable.

b. Next we discuss an interesting phenomenon of the Fourier series known as
the Gibbs phenomenon. As we know,SN (θ) of (2.80) is the sum of a finite number
of terms each of which is acontinuous function ofθ. ThusSN (θ) is a continuous
function ofθ. Let f(θ) be discontinuous atθ0. WhenN is very large, we expect
SN to approximatef(θ) very well. But how does the continuous functionSN(θ)
approximate the discontinuous functionf(θ) in the neighborhood ofθ0?

To be more specific, take the example of the function defined in (2.87). When
N is large, we expext thatSN (θ) is approximately1 when0 < θ < π, and is
approximately−1 when−π < θ < 0. How does this continuous functionSN(θ)
transit from roughly−1 to roughly1within a very short interval ofθ aroundθ = 0?

One may expect that the functionSN (θ) increases monotonically from approx-
imately−1 to approximately1 over a small neighborhood of the origin. But as it
turns out, this is not exactly the case.

If f(θ) is the function of (2.87), we have from (2.84) that

SN(θ) ≈ −1
π

∫ 0
−π
sin [(N + 1/2)(θ′ − θ)]

(θ′ − θ) dθ′

+
1

π

∫ π
0

sin [(N + 1/2)(θ′ − θ)]
(θ′ − θ) dθ′.
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Let
(N + 1/2)(θ′ − θ) = t;

then

SN (θ) ≈ −1
π

∫ −(N+1/2)θ
−(N+1/2)(π+θ)

sin t

t
dt+

1

π

∫ (N+1/2)(π−θ)
−(N+1/2)θ

sin t

t
dt.

In the limit ofN approaching∞, (N + 1/2)(π + θ) and(N + 1/2)(π− θ) both
approach∞, provided thatθ is not near the endpoint−π or the endpointπ. Thus
we have

SN(θ) ≈ −1
π

∫ −(N+1/2)θ
−∞

sin t

t
dt+

1

π

∫ ∞
−(N+1/2)θ

sin t

t
dt. (2.105)

Since its integrand is an even function oft, the first integral in (2.105) is equal to

−1
π

∫ ∞
(N+1/2)θ

sin t

t
dt.

The two integrals in (2.105) can be combined to give

SN (θ) ≈ 1
π

∫ Θ
−Θ
sin t

t
dt =

2

π

∫ Θ
0

sin t

t
dt, (2.106)

where
Θ = (N + 1/2)θ. (2.107)

The integral of (2.106) is an odd function ofΘ. Thus it suffices to discuss the
behavior of this integral for nonnegative values ofΘ only.

First, we considerSN (θ) atθ = 0. We have from (2.106) that

lim
N→∞

SN (0) = 0,

which agrees with the average value off(0+) andf(0−).
Next we considerSN(θ) whenθ takes a fixed and nonzero value. AsN →∞,

Θ goes to infinity. Thus we have
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lim
N→∞

SN(θ) ≈ 2
π

∫ ∞
0

sin t

t
dt = 1,

which agrees with the value off(θ) for 0 < θ < π.
Thus, whenN is very large, the value ofSN (θ) changes from zero whenθ is

equal to zero to approximately unity whenθ is equal to a fixed value, as expected.
But what are the values ofSN (θ) when the value ofθ is in between? LetΘ,

instead ofθ, take a fixed, nonzero and finite value. This means thatθ is equal to a
fixed, nonzero and finite value divided by(N + 1/2).

WhenΘ is finite, we have by (2.106) thatSN(θ) is approximately a function
of Θ. Now sin t is positive for0 < t < π, is negative forπ < t < 2π, and keeps
changing its sign after a period ofπ. Thus the integrandsin t/t is positive for
0 < t < π, is negative forπ < t < 2π, and keeps changing its sign after a period
of π. Since1/t monotonically decreases ast increases, the maximum value of the
integral

2

π

∫ Θ
0

sin t

t
dt

is reached atΘ = π, as the interval0 < t < π is the maximum interval possible
for sin t/t to be positive throughout. The value ofSN(θ) atΘ = π is

SN

(
π

N + 1/2

)
=
2

π

∫ π
0

sin t

t
dt.

Numerically, this value is approximately1.179, almost eighteen percent higher
than the value of unity, the value off(θ) for θ positive. Note that the value ofθ
at this point isπ/(N + 1/2), which goes to zero asN → ∞. This shows that the
value of the Fourier partial sumSN (θ) does not change monotonically from0 to
1. Rather, it starts at the value of zero atθ = 0 and overshoots its target value by
almost eighteen percent atθ = π/(N + 1/2).

Neither doesSN (θ) move down from its peak value to its target value mono-
tonically. AsΘ becomes larger thanπ, SN(θ) decreases as the integrand of (2.106)
becomes negative in the region of integrationt > π. The functionSN(θ) reaches
a minimum atθ = 2π/(N + 1/2) and then starts increasing again. In fact, it os-
cillates around the value of unity many times before it approaches the asymptotic
value of unity. If we plot the functionSN (θ) as a function ofθ, the distances be-
tween peaks and valleys shrink to zero asN increases to infinity, while the heights
of the peaks and valleys stay constant.

This oscillatory behavior ofSn(θ) is called the Gibbs phenomenon.
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G. The Laplace Transform

Let a functionf(x) be given forx ≥ 0. The Laplace transform for such a function
is defined to be

L(s) =

∫ ∞
0
e−sxf(x)dx, (2.108)

provided that the integral converges. In the above,s is independent ofx.

h Problem for the Reader

Find the Laplace transforms of the following functions:
a. xn/n!, n ≥ 0,
b. e−ax,
c. cos kx andsin kx,
d. ex

2
.

What is the analytic property of each of these Laplace transforms as a function
of the complex variables?

F Solution

a. xn/n!

It is known that ∫ ∞
0
e−ttndt = n!.

Therefore, ∫ ∞
0
dxe−sxxn/n! =

1

sn+1
. (2.109)

The integral above is convergent only ifRe s > 0. If Re s ≤ 0, the Laplace
integral above is divergent. Therefore, the Laplace transform ofxn is defined by
the Laplace integral above only in the right half-planeRe s > 0.We see that in this
half-plane,s−n−1 is an analytic function ofs.

When the integral above is not convergent, we call the right side of (2.109) the
Laplace transform ofxn/n!. In other words, we simply define the Laplace trans-
form of xn/n! in the left half-planeRe s ≤ 0 to bes−n−1. The Laplace transform
of xn/n! so defined is an analytic function ofs with the exception of annth-order
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106 COMPLEX ANALYSIS

pole ats = 0. Thus we have analytically continued the Laplace transform of
xn/n!, defined by the Laplace integral in the right half-planeRe s > 0, to the left
half-planeRe s < 0.

b. e−ax

The Laplace transform ofe−ax is∫ ∞
0
dxe−sxe−ax =

1

s+ a
. (2.110)

The integral above is convergent only ifRe(s + a) > 0. We analytically continue
this Laplace transform by defining it as(s+a)−1 for all s. It is analytic everywhere
with the exception of a simple pole ats = a.

c. cos kx andsin kx
Replacinga in (2.110) byik, we have∫ ∞

0
dxe−sxe−ikx =

1

s + ik
.

Restricting to real values ofs andk, we obtain from the real part and the imaginary
part of the equation above∫ ∞

0

dxe−sx cos kx =
s

s2 + k2
, (2.111)

and ∫ ∞
0
dxe−sx sinkx =

k

s2 + k2
. (2.112)

The integrals in (2.111) and (2.112) converge ifs is greater than zero. For
complex values ofs andk, we simply define the Laplace transforms ofcos kx
andsin kx to be the right sides of (2.111) and (2.112), respectively. The Laplace
transforms so defined are analytic functions ofs with simple poles ats = ±ik.

d. ex
2

As x→∞, the functionex
2

blows up so rapidly thate−sxex2 for any value of
s always blows up asx→∞. As a result, the integral

∫∞
0 e

−sxex2dx is divergent

no matter whats is. Thus the functionex
2

has no Laplace transform.
We note that the Laplace transforms of1, e−ax, andcos kx all approach1/s as

|s| → ∞. As a general rule, the Laplace integral in (2.108) approachesf(0)/s as
|s| → ∞ provided thatf(0) is finite and does not vanish. This can be shown by
the methods we shall give in Chapter 8.
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We observe that eachL(s) in the examples given is an analytic function of
s in the region where its Laplace integral converges. This is true in a more gen-
eral context. The integrand in (2.108) is an analytic function ofs. Consequently,
the integral in (2.108) is an analytic function ofs in the region ofs where it is
convergent. Let

s = s1 + is2,

wheres1 ands2 are the real part and the imaginary part ofs, respectively. Now we
have ∣∣e−sx∣∣ = e−s1x.

As the value ofx in the Laplace integral is always positive,e−s1x becomes
smaller ass1 becomes larger. Thus, if the integral of (2.108) converges ats = ξ0,
then the integral of (2.108) converges for alls satisfyings1 > Re ξ0. HenceL(s) is
an analytic function ofs in the right half-planeRe s > Re ξ0. In particular, ifL(s)
exists whens is purely imaginary,L(s) is analytic in the right half-planes1 ≥ 0.
If such is the case, all of the possible singularities ofL(s) lie to the left of the
imaginary axis.

The Laplace transform is a special case of the Fourier transform. Let

F (x) = f(x), x > 0,

= 0, x < 0, (2.113)

and let the Fourier integral ofF (x) converge. Then the Fourier integral of (2.53) is
the same as the Laplace integral of (2.108) withs identified withik. Thus we have

L(ik) = F̃ (k). (2.114)

This shows that ifF̃ (k) exists whenk is real,L(s) exists whens is purely
imaginary. If such is the case, (2.54) gives

f(x) =

∫ ∞
−∞
eikxL(ik)

dk

2π
, x > 0. (2.115)

Replacingk by−is, we obtain

f(x) =

∫ i∞
−i∞
esxL(s)

ds

2πi
, x > 0, (2.116)

where the integration is over the imaginarys-axis. Equation (2.116) is an inversion
formula that enables us to determine the values off(x) once the values ofL(s) on
the imaginary axis of thes-plane are obtained.
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108 COMPLEX ANALYSIS

We have implicitly assumed in the above thatf(x) is a continuous function of
x. At the pointx0 wheref(x) is discontinuous, the left side of (2.116) should be
replaced by

f(x+0 ) + f(x
−
0 )

2
.

In particular, iff(0) �= 0, the functionF (x) of (2.113) is discontinuous atx = 0,
and the inversion integral of (2.116) atx = 0 is equal tof(0)/2.

We may think of (2.116) as the contour integral

f(x) =

∫
c

esxL(s)
ds

2πi
, x > 0, (2.117)

wherec is the imaginary axis of the complexs-plane. SinceL(s) is analytic in the
right half-planeRe s ≥ 0 by assumption, all possible singularities of the integrand
lie to the left ofc.

The contourc does not have to be a straight line. We are allowed to deformc
into another contour in conformity to the Cauchy integral theorem.

If we differentiate (2.108) with respect tos, we get

dL(s)

ds
= −

∫ ∞
0
e−sxxf(x) dx.

The integral above is convergent fors1 > Re ξ0 if the Laplace integral con-
verges ats = ξ0. This is becausee−s1x is smaller if s1 is larger, as we have
mentioned above. Therefore, the Laplace transform ofxf(x) is−dL(s)/ds.

On the other hand, if we differentiate (2.117) with respect tox, we get

df(x)

dx
=

∫
c

esxsL(s)
ds

2πi
. (2.118)

However, (2.118) is not always valid, as the integral in (2.118) is not always
convergent. Indeed, iff(0) is finite and is not equal to zero,sL(s) approaches
the constantf(0) ass → ±i∞, while esx is oscillatory and does not vanish as
s → ±i∞. Thus the integral in (2.118) does not converge iff(0) does not van-
ish, and (2.118) is not meaningful. Therefore,sL(s) is not always the Laplace
transform ofdf(x)/dx.

Let us find out what the Laplace transform ofdf/dx is. We have∫ ∞
0

dxe−sxdf(x)/dx = −f(0) +
∫ ∞
0

dx se−sxf(x),

where we have performed an integration by parts. Thus the Laplace transform of
df/dx is
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G. THE LAPLACE TRANSFORM 109

−f(0) + sL(s), (2.119)

which is equal tosL(s) only if f(0) = 0.

h Problem for the Reader

Express the Laplace transform ofd2f/dx2 with L(s).

F Solution

After performing two integrations by parts successively, we find that∫ ∞
0
dxe−sxd2f(x)/dx2 = −f ′(0)− sf(0) + s2L(s). (2.120)

We mention that the integral in (2.117) is equal to zero ifx < 0. This is because
if x < 0, es1x approaches zero ass1 approaches+∞. Therefore, the integrand
in (2.117) vanishes at the infinity of the right-halfs-plane and we may close the
contour to the right. Since the integrand has no singularities in the right half-plane,
the integral is zero by Cauchy’s integral theorem. We may add that this is consistent
with the definition ofF (x) for x < 0 as given by (2.113).

We have shown that the contour integral (2.117) is valid ifL(s) is analytic in
the regionRe s ≥ 0. If this condition is not met, i.e., ifL(s) has singularities in the
regionRe s ≥ 0, the only modification needed is to makec in (2.117) a vertical line
that lies to the right of all of the singularities ofL(s). To see this, let us multiply
f(x) by the exponentially vanishing functione−ax and call

g(x) = e−axf(x). (2.121)

We shall assume that it is possible to choosea so thatg(x) vanishes sufficiently
rapidly asx→∞ and the Laplace transform ofg(x), given by

G(s) =

∫ ∞
0
e−sxg(x)dx, (2.122)
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is analytic in the right half-planeRe s ≥ 0. By the inversion formula of Laplace
transform, we get

g(x) =

∫ i∞
−i∞
esxG(s)

ds

2πi
. (2.123)

Replacingg(x) with e−axf(x), we obtain from (2.122) that

G(s) =

∫ ∞
0

e−sxe−axf(x)dx = L(s+ a).

SinceG(s) is by assumption analytic in the regionRe s ≥ 0, L(s) = G(s−a)
is analytic in the regionRe s ≥ a.

Replacingg(x) with e−axf(x), we obtain from (2.123) that

f(x) =

∫ i∞
−i∞
e(s+a)xL(s+ a)

ds

2πi
.

This formula can be written as

f(x) =

∫
c

esxL(s)
ds

2πi
, (2.124)

wherec is the straight lines = a + is2. SinceL(s) is analytic in the region
Re s ≥ a, all of the possible singularities ofL(s) are at the left of the contourc.

Laplace transform is useful in solving differential equations with initial condi-
tions. As an example, let us consider the solution of the differential equation

d2y

dx2
+ y = 1, x > 0,

satisfying the initial conditionsy(0) = 1, y′(0) = 2.

h Problem for the Reader

Solve the initial-value problem above by Laplace transform.

F Solution

By (2.120), the Laplace transform of the left side of the differential equation is

−2− s+ (s2 + 1)L(s).

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



HOMEWORK PROBLEMS FOR THIS CHAPTER 111

Note that the first two terms in the expression above are given by the initial
conditions. The Laplace transform of the right side is equal tos−1. Equating these
two Laplace transforms gives

L(s) =
s−1 + 2 + s
1 + s2

.

By (2.124), we have

y(x) =

∫
c

esx
s−1 + 2 + s
1 + s2

ds

2πi
,

wherec is a vertical line lying at the right of the imaginarys axis. Forx > 0, esx

vanishes ass1 → −∞. Therefore, we may evaluate the integral above by closing
the contour to the left. By Cauchy’s residue theorem the integral is equal to the
sum of the residues of the integrand ats = 0, i, and−i. Thus we get

y(x) = 1 + 2 sinx, x ≥ 0.
Note that the initial conditions have already been incorporated. Therefore, un-

like under the method used in Chapter 1, there are no arbitrary constants in the
solution obtained here, and we are spared the chore of determining the arbitrary
constants with the use of the initial conditions. It is easy to verify that the initial
conditions are indeed satisfied by this solution.

p Homework Problems for This Chapter

Solutions to the Homework Problems can be found at www.lubanpress.com.

1. Prove that the limit of (2.5) is the same for any∆z if the Cauchy-Riemann
equations are satisfied by the real part and the imaginary part off(z).

2. Prove thatcos
2π

5
=

√
5− 1
4
.

Hint: Let eπi/5 ≡ c+ is; then

(c+ is)5 = −1.
Equate the imaginary parts of the two sides of this equation.

3. A function that is analytic everywhere in the finite complex plane is called
an entire function. Prove the Liouville theorem that an entire functionf(z)
is a constant if it is bounded at infinity.
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Hint: Show thatf ′(z) = 0 with the formula

f ′(z) =
1

2πi
lim
R→∞

∮
cR

f(z′)
(z′ − z)2dz

′,

wherecR is a circle with its center at the origin.

4. Evaluate the following integrals with contour integration:

a.
∫ ∞
−∞

dx

(x2 + 1)(x− 2i)(x− 3i)(x− 4i) .

Ans.− iπ
60
.

b.
∫ ∞
−∞
1− cos 2x
x2

dx.

Ans. 2π.

c.
∫ ∞
−∞
sin3 x

x3
dx.

Ans. 3π/4.

d.
∫ 2π
0

1

(a+ b cosθ)2
dθ (a > b > 0).

Ans. 2πa/(a2− b2)3/2.
e.

∫ ∞
−∞

x sinx

x2 − 4π2dx.
Ans.π.

5. Explain why the integral of (2.35) is not equal to the imaginary part of∫
c

eiz

z
dz

if c is the contour in Figure 2.7

6. Evaluate the integral ∫ ∞
−∞
sinx

x+ i
dx.

Ans.
π

e
.

Explain why it is not fruitful to evaluate the integral

J =

∫ ∞
−∞

eix

x+ i
dx.
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7. Considerf(z) = log
1 +
√
1 + z2

2
.

a. Find all possible branch points of this function.
Ans. 0,±i,∞.

b. If we define
√
1 + z2 |z=0= 1, show that the origin is not a branch

point of this function. Draw a set of branch cuts to make the function
single-valued.

8. Show that the Taylor series (2.19) is convergent inside the circle with center
at z0 and with the radius equal to|z0 − z1|, wherez1 is the singularity of
f(z) nearest toz0.

Hint: Estimate the magnitude off (n)(z0)with the use of the Cauchy integral
formula.

9. Let f(z) andg(z) be analytic in a regionR, and letz0 be an interior point of
R. If f(z) = g(z) has at least one root in any neighborhood ofz0, no matter
how small this neighborhood is, prove thatf(z) = g(z) in R.

Hint: Let G(z) ≡ f(z) − g(z) and consider the Taylor series expansion of
G(z) aroundz0. Show that unless this series vanishes identically, it cannot
vanish atz if z is sufficiently close toz0 but not equal toz0.

10. Let In =
∫ ∞
0

dx

1 + xn
.

a. Prove thatIn =
π

n sin(π/n)
.What isIn in the limitn→∞?

b. Show that asn → ∞, the limit of the integralIn is equal to unity
integrated over[0, 1].

11. Evaluate the following integrals making use of branch cuts:

a.
∫ ∞
0

ln2 x

1 + x2
dx. Ans.π3/8.

b.
∫ 1
0

1

1 + x2

√
x3

1− xdx.
Hint: The integrand has a square-root branch cut from0 to 1. One
considers the sum of the following five contours: 1. The straight line
joining iε to 1 + iε; 2. The straight line joining1 − iε to−iε; 3. The
right half-circle in the clockwise direction with center at1 and with the
radiusε; 4. The left half-circle in the clockwise direction with center at
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0 and with the radiusε; 5. The infinite circle in the counterclockwise
direction. You may prove that asε approaches zero, the contributions
from contour 3 and contour 4 are zero, and the contribution from con-
tour 2 is equal to that from contour 1. The contribution from contour
5 can be calculated. The sum of the contributions from these five con-
tours is equal to, by Cauchy’s residue theorem,2πi times the sum of
the residues of the integrand in the cut plane.

Ans.π − π cos(π/8)
21/4

.

c.
∫ ∞
0

lnx

1 + x5
dx.

Hint: Add to the contour of the positive real axis the ray joining zero
to infinity with the argument2π/5. On this ray,z5 = r5, andln z =
ln r + 2π/5.

12. Let z0 be an isolated singularity off(z), and letz be a point in the neigh-
borhood ofz0. Show that

f(z) =
1

2πi

∫
CR

f(z′)
z′ − z dz

′ − 1

2πi

∫
Cε

f(z′)
z′ − z dz

′,

whereCR andCε are counterclockwise circles, the centers of which are at
z0 and the radii of which areR andε, respectively. Also,R is sufficiently
large so thatz is insideCR, andε is sufficiently small so thatz is outside
Cε. Derive the Laurent series expansion off(z) from the equation above
and discuss the region where the series is convergent.

13. Find the Fourier coefficientan for the following functions. What is the value
of the Fourier series atθ = π?

a. eθ.

Ans. an =
(−1)n
2π

eπ − e−π
1− in . The value of the series atθ = π is

1

2
(eπ + e−π).

b.
1

a+ b cosθ
.

Ans.an = (−1)n
(
a−√a2 − b2

)n
/
(
bn
√
a2 − b2

)
(n > 0), a−n =

an. The value of the Fourier series atθ = π is (a− b)−1.
14. Let u andv be functions ofx andy. Prove that

(
−→∇u) · (−→∇v) ≡ uxvx + uyvy = 2(uzvz∗ + uz∗vz).
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15. Show that iff(z) is analytic everywhere in the complex plane with the ex-
ception of a branch cut froma to b on the real axis, does not blow up as fast
as a pole at the endpointsa andb, and vanishes at infinity, then

f(z) =

∫ b
a

r(x′)
x′ − z dx

′,

with 2πir(x) the discontinuity off(z) across the branch cut.

Hint: Consider the integral
1

2πi

∫
f(z′)dz′

z′ − z with the contour of integration a

closed contour wrapping around the interval[a, b] in the clockwise direction.
Show that this integral is equal tof(z) provided thatz is outside this contour.
Now make this contour to be infinitesimally close to the line froma to b on
the real axis.

16. Find the Fourier transforms of the functionse−|x| and(1 + x2)−2.

Ans. 2(1 + k2)−1 andπ(1 + |k|)e−|k|/2.
17. The convolution ofF (x) andG(x) is defined to be

H(x) =

∫ ∞
−∞
F (x − x′)G(x′) dx′.

a. Calculate the Fourier transform ofH(x) and show that it is equal to
F̃ (k)G̃(k), whereF̃ (k) andG̃(k) are the Fourier transforms ofF (x)
andG(x), respectively.

b. Use the result above and show that
∫∞
−∞ F (−x)G(x) dx

=
∫∞
−∞ F̃ (k)G̃(k)

dk

2π
.

18. The convolution ofFm(x),m = 1, 2, · · · , n, is

H(x) =

∫ ∞
−∞
dx1

∫ ∞
−∞
dx2 · · ·

∫ ∞
−∞
dxn δ

(
x−

n∑
m=1

xm

)
n∏
n=1

Fm(xm).

Show that the Fourier transform ofH(x) is Πnm=1F̃m(k), whereF̃m(k) is
the Fourier transform ofFm(x).

19. Let f(x) andg(x) be defined forx > 0. The convolution off(x) andg(x)
is defined to be

∫ x
0 f(x − x′)g(x′) dx′. Show that the Laplace transform

of the convolution off(x) andg(x) is equal to the product of the Laplace
transform off(x) and that ofg(x).
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20. Solve with the method of Laplace transform the initial-value problem

d2y

dx2
+ y =

√
x, x > 0,

with the initial conditiony(0) = 1, y′(0) = 0.

Hint: the Laplace inversion integral fory(x) cannot be evaluated with
Cauchy’s residue theorem, as the integrand of this integral has a branch point.
Make use of the result of Problem 19 and expressy(x) as a convolution of
elementary functions.
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Chapter 7

The WKB Approximation

The WKB method is a powerful tool to obtain solutions for many physical prob-
lems. It is generally applicable to problems of wave propagation in which the wave
number of the wave is very high or, equivalently, the wavelength of the wave is
very small. The WKB solutions are approximate solutions, but sometimes they are
surprisingly accurate. In this chapter we’ll discuss this method,which is applicable
to linear equations only.

A. WKB in the Zeroth and the First Order

Consider the first-order linear differential equation

y′ = ipy.

If p is a constant, the solution is simply

y = eipx,

which describes a wave of propagation numberp.
But if p is a function ofx, the solution of this equation is

y(x) = exp

(
i

∫
p(x)dx

)
.

If we regardy(x) as a wave, then the exponent ofy(x) is the phase of a wave
with the wave numberp(x). We see that at the pointx, the phase is equal to the

239
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240 THE WKB APPROXIMATION

waveshift accumulated over the path of propagation, not tox times the local wave
numberp(x)—a perfectly logical result.

We mention that a change of the lower limit of the integral above merely
changes the integral by an additive constant, and hencey by a multiplicative con-
stant. For a linear homogeneous equation, the freedom of multiplying a solution by
a constant is always understood. Thus we shall leave the lower limit of integration
unspecified.

Next we consider the second-order differential equation

y′′ + p2y = 0. (7.1)

If p is a constant, the two independent solutions of (7.1) areexp(±ipx), waves
with wave numberp travelling in opposite directions of thex axis.

If p is a function ofx, it appears reasonable that the solutions are two waves
with the phase± ∫

p(x)dx. Thus we may surmise that the independent solutions
of (7.1) are

e
±i

∫
p(x)dx

, (7.2)

which are called the zeroth-order WKB solutions.
Let us see if these solutions satisfy (7.1). It is straightforward to show that

(
d2

dx2
+ p2

)
e
±i

∫
p(x)dx

= ±ip′e
±i

∫
p(x)dx

. (7.3)

Therefore, the WKB solutions (7.2) do not satisfy (7.1) unlessp′ = 0, or p is
independent ofx.

While we get a negative answer, (7.3) suggests thatexp(±i ∫ p(x)dx) are good
approximate solutions of (7.1) provided that±ip′ is negligible, or, more precisely,
if

|p′| 
 p2,
the right side of this inequality being a term inside the parentheses of (7.3). The
inequality above can be written as∣∣∣∣ ddx 1p(x)

∣∣∣∣
 1. (7.4)

In particular, this condition is satisfied if the wave numberp(x) is of the form

p(x) ≡ λP (x), (7.5)

whereλ is a large constant, i.e.,

 
 

SAMPLE:  Advanced Analytic Methods in Applied Mathematics, Science, and Engineering
by Hung Cheng      ISBN: 0975862510 

 
 
 
 



A. WKB IN THE ZEROTH AND THE FIRST ORDER 241

λ� 1, (7.6)

andP (x) is of the order of unity. We have assumed that none of the constant pa-
rameters inP (x) are large. Indeed, ifp(x) is given by (7.5), the inequality (7.4) is∣∣∣∣ 1λ ddx 1

P (x)

∣∣∣∣
 1. (7.7)

Clearly, (7.7) is satisfied ifλ� 1, provided thatx is not near a zero ofP (x).
As a side remark, while it is easy to accept that we may drop a term in the

equation that is much smaller than a term in the equation being kept, we shall see
in later chapters that this is not always a valid procedure. For example, the effects
from a small term of the differential equation may add up, and as the solution
evolves over a long interval of the independent variable, small perturbations may
accumulate into a large correction. A justification of the WKB solutions will be
given later.

We note that the phases of the solutionsexp(±i ∫ p(x)dx) are functions ofx,
but the magnitudes of these approximate solutions are independent ofx. Let us
remember that, in Chapter 1, we have shown that ify1 andy2 are two independent
solutions of (7.1), then the WronskianW (x) ≡ y1y′2 − y′1y2 is independent ofx.
Now the Wronskian ofexp(i

∫
p(x)dx) andexp(−i ∫ p(x)dx) is easily shown to

be equal to2ip(x), not a constant unlessp(x) is a constant. This suggests that these
approximate solutions still leave something to be desired. Because the Wronskian
of the approximate solutions miss by a factor ofp(x), let us try to fix it by adding
an additional factor1/

√
p(x) to each of the approximate solutions. The resulting

approximate solutions are

y±WKB(x) =
1√
p(x)
e
±i

∫
p(x)dx

, (7.8)

which is said to include both the zeroth-order and the first-order terms of the WKB
approximations.

The magnitude of these solutions varies withx like 1/
√
p(x). The Wronskian

of y±WKB (x) is now exactly a constant. (See homework problem 1.) It is therefore
tempting to surmise that under the condition (7.4) or, equivalently, (7.7),y±WKB(x)
are even better approximations than

e
±i

∫
p(x)dx

.

To see if this is true, we put
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242 THE WKB APPROXIMATION

y ≡ e
±i

∫
p(x)dx

v, (7.9)

and substitute this expression ofy into (7.1). We get

(D± ip)(D± ip)v + p2v = 0,

or (
d2

dx2
± 2ip d

dx
± ip′

)
v = 0.

We shall write the equation above as

v′ +
p′

2p
v = ± i

2p
v′′. (7.10)

By (7.5), (7.10) can be written as

v′ +
P ′

2P
v = ±ε i

2P
v′′, (7.11)

where

ε ≡ 1/λ

is a small number. In the first-order approximation, we ignore the right side of
(7.11) and we get

v′ +
P ′

2P
v ≈ 0, (7.12)

which gives

v(x) ≈ 1√
P (x)

. (7.13)

Thus (7.9) and (7.13) give, aside from an immaterial overall constant, the WKB
solutions (7.8).

The more traditional way to derive the WKB solutions is given in homework
problem 2 in this chapter.
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A. WKB IN THE ZEROTH AND THE FIRST ORDER 243

We have mentioned that ifP (x) has a zero atx0, the inequality (7.4) does not
hold atx0. To see how far away fromx0 it must be for the WKB approximation to
hold, letP (x) nearx0 be approximately given by

P (x) ≈ a(x− x0)n, x ≈ x0. (7.14)

Equation (7.7) requires

|x− x0| �
( n
λa

)1/(n+1)
. (7.15)

Equation (7.15) tells us how far away fromx0 it must be for the WKB approximate
solutions to be valid.

We mention that ifP (x) vanishes in the way given by (7.14), we say thatP (x)
has annth-order zero atx0. Not all zeroes ofP (x) are of finite order; an example
of P (x) having a zero of infinite order is given by homework problem 7.

As we have stated at the beginning of this chapter, the WKB approximation is
useful for describing the propagation of waves with very small wavelengths. We
shall now explain what this means more precisely. The wave number for the WKB
solutions (7.2) isp(x), and the corresponding wavelengthΩ(x) is 2π/p(x). When
λ of (7.5) is large,p(x) is large and the wavelengthΩ(x) is small. In the meantime,
the inequality (7.4) is satisfied, justifying the WKB approximation.

While all of this is straightforward in mathematical terms, we deem it useful
to clarify it further in physical terms. This is because the wavelength has the di-
mension of the distance, and the numerical value of a wavelength depends on the
distance unit we choose. For example,10−3 centimeters is exactly the same as
104 nanometers. While10−3 is a small number,104 is a large number. Is the
wavelength of such a value small or large?

The fact is that it is not meaningful to classify a quantity as either small or
large unless we compare it with another quantity of the same dimension. Let us
first examine (7.4) in this light. Expressed in terms ofΩ(x), (7.4) is

∣∣∣∣ ddx Ω(x)2π
∣∣∣∣
 1.

As bothdΩ(x) anddx have the dimension of length,dΩ(x)/dx is dimension-
less. Since it is meaningful to say that a dimensionless quantity is much less than
the dimensionless constant unity, (7.4) is meaningful.
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244 THE WKB APPROXIMATION

h Problem for the Reader

What is the dimension of
∫
p(x)dx?

F Solution

The wave numberp(x) has the dimension of the inverse of the distance. Sincedx

has the dimension of distance, the integral
∫
p(x)dx is dimensionless. We may add

that the integral
∫
p(x)dx appears in the exponent of the WKB solutions, and an

exponent should always be a dimensionless quantity.

We shall now explain what is the physical quantity we must compare the wave-
length to. Letp(x) in (7.1) be equal toa−1P (x/L), where botha andL have the
dimension of length, and whereP (x/L) is dimensionless and is of the order of
unity. ThenΩ(x) = 2πa/P (x/L). This says that the magnitude ofΩ(x) is of
the order of2πa. Note thatx/L is dimensionless and byΩ(x) being a function of
x/L we imply thatL is the scale characterizing the variation of the wavelength as
a function ofx. This means that the derivative ofΩ(x) is of the order of1/L times
Ω(x). Therefore,dΩ(x)/dx is of the order of2πa/L. As a result, the inequality
(7.4) is satisfied if

a/L
 1,

or

a
 L.

This says that the WKB approximation is valid if the wavelength is small com-
pared to2πL, whereL is the length characterizing the scale of the variation of the
wavelength.

As a trivial example, ifp is a constant, the wavelength does not change no
matter how muchx varies. ThusL is equal to infinity and the wavelength is much
smaller thanL. Indeed, ifp is a constant, the WKB solutions are not only good
approximate solutions of (7.1), but the exact solutions of (7.1).

Let us revisit the case of (7.5), for which the WKB approximation has been
justified. In this case, we havea = λ−1andL = 1. Hencea is much less thanL.
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h Problem for the Reader

Consider (7.1) withp(x) = P (εx), whereε
 1 andP (εx) is of the order of unity,
i.e.,

d2y

dx2
+ P 2(εx)y = 0.

Note that the coefficient ofy in this equation is not large, but varies slowly withx.
Can we apply the WKB approximation to this equation?

F Solution

The WKB approximation is valid if (7.4) is satisfied. Since

d

dx

1

P (εx)
= −ε P

′(εx)
P 2(εx)

,

(7.4) is satisfied ifε is very small andP does not vanish. Therefore, we conclude
that we may apply the WKB approximation to (7.1) withp(x) = P (εx) whenx is
not near a zero ofP (εx). We note that in this case,a = 1 andL = ε−1. Thus the
wavelength is again much smaller than the characteristic lengthL.

The case ofp(x) = P (εx) and the case ofp(x) = λP (x) are actually related
by a change of the scale of the independent variable. To wit, let

X = εx;

then eq. (7.1) withp(x) = P (εx) becomes

d2y

dX2
+ λ2P 2(X)y = 0,

where the large parameterλ is equal toε−1. This says that if we useX as the
independent variable,p is in the formλP (X).

We mention a couple of physical problems in which the WKB approximation
is useful. Consider the problem of determining the shadow cast on a wall by a point
light source in front of a screen. To obtain the exact solution of this problem, one
solves the wave equation and makes the solution satisfy the boundary conditions
imposed by the presence of the screen. This is a difficult boundary-value problem.
On the other hand, the shadow on the wall is very accurately determined simply
by drawing straight lines from the light source to the edges of the screen. This is
because when the wavelength of light is very small compared to the dimensions
of the screen, the WKB approximation can be used to justify the results obtained
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246 THE WKB APPROXIMATION

with the use of geometric optics.1 As another example, we know that Newtonian
mechanics is an approximation of quantum mechanics. However, the behavior of
atoms obeying the rules of wave mechanics is drastically different from that of
particles obeying the rules of Newtonian mechanics. How does one reconcile these
two sets of rules? The answer again lies in the WKB approximation, in which the
Schrödinger equation is reduced to the Hamilton-Jacobi equation satisfied by the
classical action of Newtonian mechanics.

The WKB approximation can also be used to solve problems in which the
functional behavior is rapidly growing or rapidly decaying rather than rapidly os-
cillatory, an example being the problems of boundary layer, which we will discuss
in Chapter 9. Consider the equation

y′′ − η2y = 0. (7.16)

The WKB solutions are given by

y±WKB(x) =
1√
η(x)
e
±

∫
η(x)dx

. (7.17)

These solutions are good approximations of the solutions of (7.16) if∣∣∣∣ ddx 1η(x)
∣∣∣∣
 1. (7.18)

The counterpart of (7.5) is
η(x) = λN (x), (7.19)

whereλ � 1 andN (x) is of order unity. As before, ifη is in the form (7.19), the
inequality (7.18) is always satisfied unlessx is near a zero ofN (x).

B. Solutions Near an Irregular Singular Point

In some mathematical problems, the large parameterλ is not explicitly exhibited.
As an example, consider the problem of solving the equationy′′+ xy = 0 whenx

1S. I. Rubinow and T. T. Wu,Journal of Applied Physics 27:1032 (1956); T. T. Wu,Physical
Review 104:1201 (1956).
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B. SOLUTIONS NEAR AN IRREGULAR SINGULAR POINT 247

is very large. In this problem,x inherently contains a large parameter. Indeed, let
x be of the order ofΛ, withΛ� 1. We may put

x ≡ ΛX,
whereX is of the order of unity. Then the Airy equation is(

d2

dX2
+Λ3X

)
y = 0.

This is in the canonical form for which the WKB method can be applied.
Thus the WKB approximation is useful for obtaining the asymptotic solutions

near an irregular singular point of a second-order linear homogeneous equation.
While we have already given a method in the preceding section to obtain these
solutions, it applies only when the rank of the singular point is an integer. The
WKB method has no such restriction. In addition, the use of the WKB method
makes it easy to obtain the leading terms of the asymptotic series.

Let us consider the leading asymptotic terms for the solutions of the equation

y′′ + xy = 0. (7.20)

Forx < 0, we have, comparing with (7.16),

η = (−x)1/2.
Thus the WKB solutions are

|x|−1/4e±2|x|3/2/3. (7.21)

We conclude immediately that whenx is large and negative, one of these solu-
tions is an exponentially increasing function ofx and the other is an exponentially
decreasing function ofx.

Whenx is positive, we have, comparing with (7.1),

p = x1/2.

Thus the WKB solutions are

x−1/4e±i2x3/2/3, (7.22)

both being oscillatory functions ofx.
Next we will give the entire asymptotic series for whenx is positive and very

large in magnitude.
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248 THE WKB APPROXIMATION

h Problem for the Reader

Find the asymptotic series for the solutions of the equation (7.20) forx� 1.

F Solution

We note from the power function of the exponent in the WKB solutions that the
rank of a singular point at infinity is3/2. Since the rank is not an integer, the
method given in the preceding chapter cannotbe directly applied. By (7.4), these
WKB solutions are good approximate solutions if

x� (1/2)2/3.

To find corrections of the WKB solutions, we put

y = exp

(
±2x

3/2

3
i

)
v.

Thenv satisfies the equation

(
d

dx
+
1

4x

)
v = ± i

2x1/2
d2

dx2
v. (7.23)

The dimension of the operator on the left side of the equation above is−1, while
the dimension of the operator on the right side is−5/2. These two dimensions
differ by 3/2, which is not an integer. Thus we make the change of variable

ρ ≡ x3/2.

In terms of the variableρ, these two dimensions differ by unity, an integer.
Then (7.23) becomes(

d

dρ
+
1

6ρ

)
v = ±3i

4

(
d

dρ
+
1

3ρ

)
dv

dρ
. (7.24)

Let
v =

∑
anρ

−n−s, a0 �= 0, and a−1 = a−2 = · · ·= 0. (7.25)

We have
dv

dρ
+
v

6ρ
=

∑
−

(
n+ s− 1

6

)
anρ

−n−s−1,
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and

±3i
4

(
d

dρ
+
1

3ρ

)
dv

dρ
= ±3i

4

∑
[(n+ s)(n+ s + 1)− 1/3(n+ s)] anρ−n−s−2

= ±3i
4

∑
(n+ s − 1)(n+ s − 1/3)an−1ρ−n−s−1.

Thus we get

−
(
n + s − 1

6

)
an = ±3i

4
(n+ s − 1)(n+ s − 1/3)an−1. (7.26)

Settingn = 0 in the equation above, we get

s = 1/6.

We sets = 1/6 in (7.26) and get, forn > 0,

an = ∓3i
4

(n− 5/6)(n− 1/6)
n

an−1 =
(
∓3i
4

)n Γ(n+ 1/6)Γ(n+ 5/6)
Γ(1/6)Γ(5/6)n!

a0.

(7.27)
Therefore, forx� 1, the two asymptotic solutions of (7.20) are

x−1/4 exp

(
±2x

3/2

3
i

) ∞∑
n=0

(
∓3i
4

)n Γ(n+ 1/6)Γ(n+ 5/6)
n!

x−3n/2. (7.28)

h Problem for the Reader

Find the WKB solutions for the Bessel equation(
ρ2
d2

dρ2
+ ρ
d

dρ
+ ρ2 − p2

)
Y (ρ) = 0. (7.29)

F Solution

First we transform eq. (7.29) into the form of (7.1). This is done by putting

Y (ρ) = ρ−1/2y(ρ),
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250 THE WKB APPROXIMATION

getting (
d2

dρ2
+ 1− p

2 − 1/4
ρ2

)
y = 0.

Identifying

p =

√
1− p

2 − 1/4
ρ2

,

we have, whenρ is large,

p � 1.
Thus we have

yWKB(ρ) = e
±iρ

and

YWKB(ρ) = ρ
−1/2 exp(±iρ). (7.30)

This is in agreement with the leading terms of (6.63) and (6.64), found with a little
more effort.

The WKB solutions sometimes even help us to obtain the exact solution of an
equation.

h Problem for the Reader

Solve in closed form

y′′ +
(
x2 +

2

9x2

)
y = 0. (7.31)

F Solution

The WKB solutions of (7.31), valid for|x| � 1, are easily found to be

yWKB(x) = x
−1/2 exp

(
±x
2i

2

)
. (7.32)
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The exponent in (7.32) is equal to a constant timesx2; thus infinity is a singular
point of the ODE of rank two. (We see once again that using the WKB method is
an easy way to obtain the rank of a singular point.)

Let us look into the possibility ofy being a Bessel function. Comparing the
exponent of the solution of (7.30) with that of (7.32) suggests to us that

ρ =
x2

2
. (7.33)

With this identification of the independent variables, the exponential function of
the solution of (7.30) is now equal to that of (7.32). Yet the factor multiplying the
exponential function of (7.30) isρ−1/4, which differs from that of (7.32) by a factor
of ρ−1/4. Let

Y = ρ−1/4y; (7.34)

then the asymptotic forms ofY are exactly the same as those given by (7.30).
Therefore, we make the change of the independent variable (7.33) and the change
of the dependent variable (7.34) for equation (7.31). Then it is straightforward to
show that eq. (7.31) becomes the Bessel equation with orderp equal to1/12. Thus
the general solution of (7.31) is

y(x) = x1/2
[
aJ1/12(x

2/2) + bJ−1/12(x2/2)
]
, (7.35)

wherea andb are constants.

h Problem for the Reader

Show that the parabolic functionDν(x) satisfying the equation

y′′ + (ν + 1/2− x2/4)y = 0

is not directly related to the Bessel functions unlessν = −1/2.

F Solution

Let
η =

√
x2/4− ν − 1/2.
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Whenx is large and positive, we have

η � x/2− (ν + 1/2)x−1.

Thus ∫
ηdx � x2/4− (ν + 1/2) lnx.

Note that while a term inη that is equal to a constant timesx−1 is small whenx
is large, it generates a term in

∫
ηdx that is equal to a constant timeslnx. Such a

term is large whenx is large, and cannot be ignored. The WKB solutions for this
equation are

y+WKB(x) = x
νe−x2/4

and
y−WKB(x) = x

−ν−1ex
2/4.

The power functions for these two solutions are different unlessν = −1/2 , while
those for the Bessel functions are the same. Thus, unlessν = −1/2, the parabolic
cylinder functionDν(x) is not equal to a power function times a Bessel function
Zp(ρ), wherep is any number andρ is any function ofx.

Finally, we mention that while one may get the notion that (7.4) is likely to hold
in the region ofx wherep(x) is very large, this is not always the case. Consider

p(x) = 1/x, (7.36)

which is very large whenx is small. Yet

d

dx

1

p(x)
= 1,

which is not small whenx is small.

C. Higher-Order WKB Approximation

We shall in this section find the higher-order terms of the WKB approximation. For
this purpose let us return to eq. (7.11). Since this equation has a small parameter
ε and is linear, it is straightforward to use it to derive successive corrections to the
WKB approximations. We put
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v = v0 + εv1 + ε
2v2 + · · · , (7.37)

wherevn, n = 0, 1 · · · , are independent ofε. The series in (7.37) is called a
perturbation series, which is expected to be useful whenε is small. We substitute
(7.37) into (7.11) and get

(v0 + εv1 + ε
2v2 + · · · )′ + P

′

2P
(v0 + εv1 + ε

2v2 + · · · )

= ± iε
2P
(v0 + εv1 + ε

2v2 + · · · )′′. (7.38)

In the lowest-order approximation we setε in (7.38) to zero and get

v0
′ +
P ′

2P
v0 = 0.

This equation gives

v0(x) =
1√
P (x)

,

which is, aside from an immaterial constant multiple, (7.13).
Setting to zero the sum of terms in (7.38) that are proportional toε, we get

v′1 +
P ′(x)
2P (x)

v1 = ± i

2P (x)

(
1√
P (x)

)′′
. (7.39)

Solving this first-order linear equation, we find that

v1(x) = ± i

2
√
P (x)

∫
1√
P (t)

(
1√
P (t)

)′′
dt. (7.40)

Now we are ready to give a justification of the WKB method, which is approxi-
mating the solution of (7.1) by truncating the series of (7.37). Strictly speaking,
truncating a series is justified if we succeed in proving that the sum of terms ne-
glected is much less than the sum of terms kept. But proving this is sometimes
difficult to do. We shall be content with proving that the(n + 1)th term in the
series is much less than thenth term if ε is sufficiently small. Thus we will accept
that the WKB solutions (7.8) are good first-order approximations if

|εv1| 
 |v0|. (7.41)
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Sinceε is small, (7.41) is satisfied provided thatv1(x)/v0(x) does not blow up,
which is true unlessP (x) happens to vanish.

If P (x) vanishes atx0, the differential equation (7.1) is said to have a turning
point atx0. At a turning point of the differential equation, we may prove from
(7.40) that the ratiov1/v0 blows up, and the WKB approximation fails.

How far away from the turning point must it be in order for the WKB approxi-
mation to work? If whenx is nearx0,P (x) goes to zero like(x−x0)n, thenv1(x)
blows up like

(x− x0)−1−3n/2, (7.42)

while v0(x) blows up like(x− x0)−n/2. Thus (7.41) requires

|x− x0| � 1

λ1/(1+n)
. (7.43)

Aside from a multiplicative constant, (7.43) is the same condition as (7.15).
We may find all higher-order terms of the solution from (7.38). This is done

by gathering all the terms in (7.38) proportional toεm and setting the sum to zero.
We get

v′m +
P ′

2P
vm = ± i

2P
v′′m−1. (7.44)

Thus

vm(x) = ± i

2
√
P (x)

∫
dx√
P (x)

d2

dx2
vm−1(x). (7.45)

From (7.45), we obtain themth-order term of the perturbation series once the(m−
1)th-order term of the perturbation series has been found. Thus we obtain allvm
by successive iteration.

If P (x) has no zero, allvm are finite. Whenε is sufficiently small, we have

|εvm| 
 |vm−1|. (7.46)

Thus the WKB approximation is justified to higher orders. Here we like to give
the reader a reminder: The WKB approximation has been justified to higher orders
only if p(x) is of the form (7.5) orη(x) is of the form of (7.19), and neither of them
vanishes. (I feel obligated to say it as I have seen the WKB approximations being
too liberally applied.)
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We may show that ifP (x) vanishes atx0 and is given by (7.14) nearx0, the
condition (7.46) is satisfied provided thatx is sufficiently far away fromx0 so that
(7.15) is satisfied. (See homework problem 3.)

The high-order WKB approximations for (7.16) can be obtained in a similar
way. We put

y ≡ e±
∫
η(x)dxv. (7.47)

Then we have

v′ +
η′

2η
v = ∓ 1

2η
v′′. (7.48)

We may use (7.48) to obtain successive approximations of the WKB solutions of
(7.16).

D. Turning Points

As we have mentioned, the WKB approximation is useful in problems of wave
propagation. In this section we demonstrate this by applying it to the wave equation
that governs the quantum mechanical behavior of a particle.

Consider the time-independent Schr¨odinger equation of one spatial dimension
discussed at the end of Chapter 5. We will write this equation in the form

d2φ

dx2
+ λ2 [E − V (x)]φ = 0, (7.49)

whereλ is equal to
√
2m divided by the Planck constant, withm the mass of the

particle. We shall considerλ as a very large number.
As we have mentioned,|φ|2 is the probability density of the particle,E is the

energy of the particle, andV (x) is the potential. We note thatE − V is equal to
the kinetic energy of the particle.

In the region where

E > V (x),

the kinetic energy of the particle is positive. Comparing with (7.1), we identify
p(x) with

λ
√
E − V (x).
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256 THE WKB APPROXIMATION

The WKB solutions are

p−1/2ei
∫
pdx and p−1/2e−i

∫
pdx. (7.50)

Thus the wavefunctionsφ in the classically accessible region are oscillatory as a
function ofx.

In the region where

E < V (x),

the kinetic energy of the particle is negative, and the momentum of the particle is
imaginary. In classical mechanics, the momentum is not allowed to be imaginary.
Thus this region is inaccessible to the classical particle. In quantum mechanics, the
wavefunctionφ is exponentially small in this region. The WKB solutions of the
wave equation are

η−1/2e
∫
ηdx and η−1/2e−

∫
ηdx, (7.51)

where

η = λ
√
V (x)− E.

The first solution above is exponentially increasing asx increases, and the second
solution above is exponentially decreasing asx increases. Since a particle is rarely
observed in the classically inaccessible region, we require the wavefunctionφ in
this region to be the solution that decreases to smaller and smaller values asx goes
deeper and deeper into the classically inaccessible region.

Let there be a pointx0 at which

E − V (x0) = 0.

Note thatx0 is the point at which the momentum of the particle vanishes. By (7.4),
the WKB approximation fails atx0.

Let us study the behavior of the wavefunction nearx0. We shall assume that
V ′(x0) is different from zero; henceE−V (x) is negative at one side ofx0 and pos-
itive at the other side ofx0. The pointx0 is the dividing point between a classically
accessible region and a classically inaccessible region. In classical mechanics, the
particle cannot move into the region where its kinetic energy is negative, and must
turn back as it arrives atx0. That is whyx0 is called a turning point of the wave
equation. As we may expect, the qualitative behavior of the quantum wavefunc-
tion goes through a transition nearx0. More precisely, the WKB solution changes
from an oscillatory behavior from one side of the turning point to an exponential
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D. TURNING POINTS 257

behavior at the other side of the turning point. However, we cannot continue the
solution from one side of the turning point to the other side of the turning point
with the WKB solutions alone. This is because the WKB approximation fails in a
small neighborhood around the turning pointx0.

Fortunately, another approximation for the solution is available whenx is close
to x0. In order to make the following discussions appear as simple as possible, we
shall choosex0 = 0.

Near the turning point that is chosen to be the origin, we have by assumption

[E − V (x)] ≈ −αx,

with α equal toV ′(0). This linear approximation is valid for

|x| 
 1. (7.52)

We will call the region given by (7.52) the turning region. In the turning region,
the wavefunctionφ is approximately described by

d2φ

dx2
− αλ2xφ = 0, (7.53)

the general solution of which is a linear superposition of Airy functions.
We expect the WKB solutions to be good whenx is sufficiently far away from

the turning point. How far away from the turning point shouldx be in order for the
WKB approximation to be valid? Not very far, as it turns out. Indeed, by (7.4), the
region where the WKB approximation is valid is determined to be

|x| � Λ−2/3, (7.54)

where
Λ2 = |α|λ2.

SinceΛ is very large compared to unity,Λ−2/3 is very small compared to unity.
Thus the WKB solutions are good even whenx is close, although not too close, to
the turning point.

This means that there are values ofx for which both (7.52) and (7.54) are
fulfilled. These are the values ofx satisfying the inequality

1� |x| � Λ−2/3.

The regions ofx satisfying the inequality above will be called the overlapping
regions, in which both the WKB solutions and the Airy function solutions are good
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258 THE WKB APPROXIMATION

approximations of the wavefunction. Becausexmay be either positive or negative,
there are two disjoint overlapping regions. They are

1� x� Λ−2/3 (7.55a)

and

1� −x� Λ−2/3 (7.55b)

Visually, these two overlapping regions form the two fringes of the turning region.
The existence of these two overlapping regions is crucial. The Airy functions

approximate the wavefunction well throughout the turning region, which overlaps
with the region in which the WKB solutions are good. This fact enables us to
join the WKB solution from one fringe to the other, using the Airy functions to
interpolate the wavefunction through the central part of the turning region where
the WKB approximation fails.

We now demonstrate specifically how this is done. First we consider the case
in which (7.49) has only one turning point. Without loss of generality we shall let
α be positive. (For ifα is negative, we may make a change of variable, referring to
x as−x.) If α is positive, the kinetic energy of the particle is negative in the region
x > 0. In classical mechanics, this is the region inaccessible to the particle. Thus
we require the wavefunctionφ to vanish rapidly asx increases in this region. The
WKB solution in the regionx > 0 satisfying this requirement is

φWKB(x) =
e
−

∫ x
0

η(x′)dx′

√
η(x)

. (7.56)

Incidentally, we may choose the solution to be a constant times the right side of
(7.56), but this affects only the overall normalization of the wavefunction and we
will leave it the way it is.

We use the solution of (7.56) to describe the wavefunction in the regionx > 0.
This WKB solution fails asx gets into the interior of the turning region. To obtain
an approximation of the solution that is good throughout the turning region, we
note that whenx is in the turning region, we may approximate (7.49) by (7.53). By
changing the independent variable, we transform eq. (7.53) into the Airy equation

d2

dρ
y − ρy = 0,
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D. TURNING POINTS 259

where

ρ = Λ2/3x. (7.57)

Thus the two independent solutions of (7.53) are the Airy functions denoted by
Ai(ρ) andBi(ρ).

Note thatρ is related tox by a change of scale. Therefore, a region of unit width
in thex variable corresponds to a region of widthΛ2/3 in theρ variable. SinceΛ2/3

is a very large number, the region of unit width in thex variable corresponds to a
region of very large width in theρ variable. When we study the solution as a
function of ρ, it is like studying the function with a magnifier, under which the
scale is enlarged.

In terms of the variableρ, the turning region is given by

|ρ| 
 Λ2/3, (7.58)

which is a very large region, and the overlapping regions are given by

1
 ρ
 Λ2/3 (7.59a)

and

1
 −ρ
 Λ2/3. (7.59b)

As we will discuss in the next chapter, the asymptotic forms ofAi(ρ) when the
magnitude ofρ is large are given by

Ai(ρ) ∼ e
−2ρ3/2/3
2
√
πρ1/4

, ρ→∞, (7.60)

and

Ai(ρ) ∼
sin

[
2

3
(−ρ)3/2 + π

4

]
√
π(−ρ)1/4 , ρ→ −∞. (7.61)

SinceAi(ρ) vanishes exponentially whenρ is large and positive, the Airy function
solution that matches the WKB solution (7.56) is

φ(x) = cAi(ρ), (7.62)

wherec is a constant.
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260 THE WKB APPROXIMATION

To determinec, we match the solution (7.62) with the solution (7.56) in the first
overlapping region (7.59a) or, equivalently, (7.55), where both approximations are
good. Now whenx is small and positive, we have

η(x) ≈ Λx1/2 = Λ2/3ρ1/2

and

−
∫ x
0
η(x′)dx′ ≈ −2ρ

3/2

3
.

Thus the solution (7.62) and the solution (7.56) have the same functional form in
the overlapping region. They match exactly if we choose

c =
2
√
π

Λ1/3
.

Therefore, as we continue the wavefunction (7.56) into the turning region, the
wavefunction becomes

φ(x) =
2
√
π

Λ1/3
Ai(ρ). (7.63)

Next we continue the wavefunction further into the regionx < 0. By (7.61),
the Airy function solution (7.63) asρ is negative and large is

φ(x) ≈ 2

Λ1/3

sin

[
2

3
(−ρ)3/2 + π

4

]
(−ρ)1/4 . (7.64)

In the second overlapping region (7.55b) or, equivalently, (7.60b), we have

p(x) ≈ Λ(−x)1/2 = Λ2/3(−ρ)1/2

and ∫ 0
x

p(x′)dx′ ≈ 2
3
(−ρ)3/2.

Therefore, the WKB solution forx < 0 that matches (7.64) in the second overlap-
ping region is

2 sin
[∫ 0
x p(x

′)dx′ + π/4
]

√
p(x)

. (7.65)
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D. TURNING POINTS 261

We point out that as it is being continued into the regionx < 0, the WKB
solution (7.56) forx > 0 turns into neither a multiple of the WKB solution

p−1/2ei
∫
pdx

nor a multiple of the WKB solution

p−1/2e−i
∫
pdx.

Instead, it turns into a linear superposition of equal magnitude of these two solu-
tions.

With (7.56), (7.63), and (7.65), we have, for the wave equation of one turning
point, an approximate solution covering all values ofx. It is easy to generalize the
results above to the case in which the turning point is located atx0 rather than at
the origin. We simply callX = x − x0, and the pointx = x0 corresponds to the
pointX = 0. Thus we only need to replacex in the results above byX . I remind
the reader that if we re-express the results so obtained in terms of the variablex, the
limits of integration given in the formulae above should be changedaccordingly.
For example,X = 0 corresponds tox = x0.

We are now ready to treat the wave equation with two turning points. Letx0
andx1 be the two turning points, withx0 > x1. Let E − V (x) be positive inside
the regionx1 < x < x0, and be negative outside the region. In classical physics,
the regionx1 < x < x0 is the region to which the particle is confined. Thus we
must require the wavefunction to decrease rapidly asx leaves the regionx1 < x <
x0. In particular, we require that the wavefunction vanish asx approaches plus
infinity or minus infinity.

This is a boundary-value problem with the trivial solution

φ = 0.

This trivial solution satisfies both (7.49) and the conditions of vanishing at plus
infinity and minus infinity.

A nontrivial solution exists only ifE takes some special values called eigen-
values. These eigenvalues can be found approximately with the WKB method, as
we shall presently show.

Since it is required to vanish asx → −∞, the WKB solution in the region
x < x1 is chosen to be

e
−

∫ x1
x
η(x′)dx′

√
η(x)

. (7.66)
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262 THE WKB APPROXIMATION

Since it is required to vanish asx→∞, the WKB solution in the regionx > x0 is
of the form

φWKB(x) = a
e
−

∫ x
x0

η(x′)dx′

√
η(x)

, (7.67)

wherea is a constant. Since the normalization of the wavefunction has been set
by choosing the wavefunction in the regionx < x1 to be precisely the expression
in (7.66), we no longer have any freedom to choosea for the wavefunction in the
regionx > x0. The constanta will be determined with a calculation.

We shall give the wavefunction only in the region that is inside the interval
x0 > x > x1 but is sufficiently far away from the turning pointsx0 andx1. The
WKB approximation holds throughout this region. Since the matching with the
Airy functions has already been performed, we shall be spared the chores of doing
it once again if we are not interested in the wavefunction near the turning points.

We find with the use of (7.65) that the WKB solution in the regionx0 > x > x1
that matches with (7.66) is

2 sin
[∫ x
x1
p(x′)dx′ + π/4

]
√
p(x)

.

We also find with (7.65) that the WKB solution in the regionx0 > x > x1 that
matches with (7.67) is

2a sin
[∫ x0
x p(x

′)dx′ + π/4
]

√
p(x)

,

where the factora is the same as in (7.67). Since these two solutions are valid in
the same regionx1 < x < x0, they are required to be the same. Hence we have

sin

[∫ x
x1

p(x′)dx′ + π/4
]
= a sin

[∫ x0
x

p(x′)dx′ + π/4
]
. (7.68)

Settingx = x0, we get from (7.68)

sin (I + π/4) = a/
√
2, (7.69)

where

I ≡
∫ x0
x1

p(x′)dx′.
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D. TURNING POINTS 263

Differentiating (7.68) with respect tox and settingx = x0, we get

cos (I + π/4) = −a/√2. (7.70)

Taking the ratio of (7.69) and (7.70), we get

tan (I + π/4) = −1.
Therefore,

I =

∫ x0
x1

p(x)dx = (n+ 1/2)π, n = 0, 1, 2, · · · , (7.71)

which is known as the Bohr quantization rule giving the approximate energy eigen-
values. Substituting this value ofI into (7.68), we get

a = (−1)n.

h Problem for the Reader

With the use of the WKB method, find the quantum energy eigenvalues of the
harmonic oscillator for which

V (x) =
1

2
κx2,

whereκ is a constant.

F Solution

The turning points are obtained by setting

E − 1
2
κx2 = 0,

which gives
x1 = −L, x0 = L,

where

L =

√
2E

κ
.

We have

I = λ

∫ L
−L

√
E − κx2/2dx.
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264 THE WKB APPROXIMATION

To evaluate the integral above, it is best to scale the variable of integration so that
the limits of integration are−1 and1. Thus we put

X = x/L,

and get

I = λE

√
2

κ

∫ 1
−1

√
1−X2dX.

Since ∫ 1
−1

√
1−X2dX = π/2,

we find

I = λEπ

√
1

2κ
.

Therefore, Bohr’s quantization rule says that

En =
√
2κλ−1(n+ 1/2), n = 0, 1, 2 · · · ,

which turns out to be the exact answer.

We note that in classical physics, the energy of a harmonic oscillator can take
any value from zero to infinity. But in quantum mechanics, the energy can only
take the discrete values given above. The lowest of the energy eigenvalues is

1

2

√
2κ/λ,

while the other energy eigenvalues are evenly spaced with distance
√
2κ/λ apart.

We say that the energy of a harmonic oscillator is quantized. (A more in-depth
discussion of the solution near a turning point will be given in Section E of Chap-
ter 9.)

p Homework Problems for This Chapter

Solutions to the Homework Problems can be found at www.lubanpress.com.

1. Show that the Wronskian ofy+WKB andy−WKB given by (7.4) is a constant.

Hint: To calculate the Wronskian ofy+WKB andy−WKB , it is efficient to use
the formula (1.7).
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HOMEWORK PROBLEMS FOR THIS CHAPTER 265

2. The WKB solutions (7.8) can also be derived by puttingy = eiλS and sub-
stituting this expression fory into

d2y

dx2
+ λ2P 2(x)y = 0.

a. Show thatS satisfies the nonlinear second-order differential equation

iλS ′′− λ2(S ′)2 + λ2P 2 = 0.

b. Explain why we may drop the termiS ′′ in the equation above and ob-
tain

(S ′)2 − P 2 = 0.
This equation is known as the Hamilton-Jacobi equation. Show that
this approximation is justified as long as

|λS ′′| 
 (λS ′)2.

c. Show that the solutions of the Hamilton-Jacobi equation are
S = ± ∫

Pdx, which will yield the zeroth-order WKB approximation.
Show also that, withS given by± ∫

Pdx, the inequality given in (b) is
the same as (7.7).

d. Obtain the additional factor1/
√
P (x) in the WKB solutions by ex-

pressingS as the perturbation series

S = S0 + εS1 + · · ·
and solving forS1, whereε = λ−1 is a small number.

e. Discuss how to obtain the second-order WKB approximation with this
approach. Compare this method of getting the second-order WKB ap-
proximation with the method given in Section C of this Chapter.

3. Show that whenP (x) has a zero of ordern at x0, (7.46) is true if (7.15)
is satisfied, wheren can be any positive number. What ifP (x) vanishes at
x = 0 like e−1/x2?

4. Find the zeroth-order and the first-order terms for the solutions of

d4y

dx4
+ λ4U(x)y = 0, λ� 1,

whereU(x) does not vanish. Consider both the casesU(x) > 0 andU(x) <
0. How do you find the higher-order terms of the solutions?
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266 THE WKB APPROXIMATION

5. Solve the following equations in closed forms:

a. y′′ + xmy = 0,
b. y′′ + (x2 + 3x−2/16)y = 0,
c. y′′ − (x4 − 3x−2/16)y = 0.

6. Obtain the WKB solutions for the equations below. For what positive values
of t are these approximations good? Can you solve them in closed forms?

a.
d2y

dt2
+ (1 + e−εt)y = 0, where ε
 1.

b.
d2y

dt2
+ e−εty = 0, where ε
 1.

Hint: To obtain the solutions of these equations in closed forms, put

τ =
2

ε
e−εt/2.

The solutions for the equation of (a) areJ±2i/ε(τ), whereas those of

(b) areJ0(τ) andY0(τ).

7. For the example in (6b), make the transformationT = εt and cast the equa-
tion into the form

d2y

dT 2
+ λ2P 2(T )y = 0.

What isλ and what isP (T )? Show thatP (T ) has only one zero. What is
the order of this zero ofP (T )?

8. Considery′′ + x−2y = 0 for x of the order ofε, ε 
 1. Let x ≡ εX and
show that there is no large parameter in the resulting equation. What do you
conclude from this example?

9. Find the WKB solutions of the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0,

wherea andc are constants. Determine the values ofx for which the WKB
solutions are good approximations.
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10. With the use of the WKB method, find the approximate quantum energy
eigenvalues of a particle moving in the potential

V (x) =
1

2
κx4,

whereκ is a constant.

Hint: The integral ∫ 1
0

√
1−X4dX

can be expressed by a Beta function

B(p, q) =

∫ 1
0
tp−1(1− t)q−1dt (p, q > 0),

which is equal to
Γ(p)Γ(q)

Γ(p + q)
.
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423, 425, 426, 429, 449
renormalized perturbation, 414–430,

438, 444, 457, 458
Riccati’s equation, 22, 23, 25, 28
Riemann-Lebesgue lemma, 20, 297
roots of the Bessel function, 189
Rutherford’s experiment, 293, 297, 319

S
saddle point, 304, 309–345
Schrödinger equation, 192–199, 246,

255, 465, 476–478
second-order PDEs, 145–173, 175, 176
secular term, 412, 415–417, 419–423,

427–430, 432, 434, 436–441,
443, 446, 447, 451, 452, 457,
458, 460

separable equation, 11, 199, 406
separation of variables, 26, 175–199,

201, 210, 477, 478
singular perturbation, 347–403, 414,

438, 444, 482–485
singular point, 9, 201–238, 246–252,

270, 310, 414, 478, 479
slowly varying solution, 353, 354, 357,

368, 369, 371, 372, 379, 380–
384, 394, 395, 396, 399, 400,
403

Stirling formula, 288, 343
Stokes line, 329
Stokes phenomenon, 329
Sturm-Liouville problem, 180, 189–

192

T
transverse components, 146
turning point, 254–257, 364–385, 389,
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391–395, 399, 403
two-scale method, 430–454, 456–460,

484

U
unrenormalized perturbation series, 417,

418, 430

V
van der Pol equation, 450, 459

W
wave equation, 122, 158–173, 186–

192, 245, 255, 256, 261, 305–
307, 364, 465

well posed, 151, 163, 164, 168, 187,
476

WKB method, 239, 247, 251, 253,
261, 263, 266, 267, 328, 357,
365, 386, 392, 402, 440, 443,
479, 480

WKB solution, 194, 239–244, 246–
250, 252, 253, 255–262, 265,
266, 269, 325, 365, 374, 384,
388–390, 392, 400, 402, 431

Wronskian, 23, 32, 241, 264

Z
zeroth-order WKB solution, 240, 265
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